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Abstract 

Mobile devices capabilities have increased tremendously over the last few years, enabling mobile 

users to run resource-heavy applications, such as route planners, web browsers and games, at any 

time and any place. Much work has been done to facilitate interaction with mobile applications, in 

mobile settings and on devices with relatively small screens and cumbersome input features. For 

instance, multi-touch, gesture and voice recognition are deployed to easily execute certain actions, 

while obtrusiveness of mobile interactions is adapted to suit the user’s current situation (e.g., in a 

meeting). However, mobile interactions still have inherent limitations, mainly due to the fact they are 

mobile in the first place; mobile users often do not have the time, or the comfortable desktop-

setting, to interact with mobile applications. In order to cope with such limitations, the mobile user’s 

context can further be leveraged. Context is defined as any piece of information related to 

application interaction, including information on the user’s surroundings as well as the user and 

device. By automatically presenting information and services suiting the user’s current context, 

mobile interactions can be enhanced. For example, considering the mobile user’s current 

surroundings and preferences, he can be notified of nearby shops selling items on his shopping list, 

or nearby public transportation stations leading back to his hotel. 

In this dissertation, we present a client-side framework to provision context in mobile settings, which 

exploits recent evolutions in mobile device technology and the World Wide Web. By leveraging 

increased mobile processing power and memory capacity, computationally intensive tasks, such as 

context interpretation, integration and dissemination, are performed locally on the mobile device 

itself. Furthermore, the machine-readable Semantic Web, the next step in the evolution of the Web, 

is utilized as an online platform for retrieving context data. Much useful context information, 

describing people, places and things in the user’s vicinity, is already captured in small, machine-

readable online web sources; including websites (e.g., shops, monuments) and online RDF files (e.g., 

person profiles). As websites are being increasingly semantically annotated, making the meaning of 

their content explicit, many of them have become fully-fledged semantic data sources as well. In 

order to achieve transparent, integrated query access to such small online semantic sources, this 

dissertation further presents a mobile, client-side query service. This query service comprises 

indexing and caching components to enable querying such an online dataset on mobile devices. 

  



 



Samenvatting 

Dankzij de enorme toename in capaciteiten van mobiele toestellen in de laatste jaren, is het mogelijk 

geworden voor mobiele gebruikers om computationele en/of data intensieve applicaties zoals route 

planners, web browsers en spelletjes uit te voeren, op eender welke plaats en moment. Er is reeds 

veel werk verricht om interacties met mobiele applicaties te faciliteren in mobiele omgevingen en op 

toestellen met relatief kleine schermen en moeilijk te hanteren invoermogelijkheden. Bijvoorbeeld, 

technieken zoals multi-touch, gebaar- en stemherkenning worden toegepast om bepaalde acties op 

een eenvoudige manier uit te voeren, terwijl de opdringerigheid van mobiele interacties aangepast 

kan worden naargelang de situatie van de gebruiker (bijv., in een vergadering). Ondanks deze 

inspanningen hebben mobiele toestellen echter nog steeds inherente limitaties, voornamelijk 

omwille van het feit dat ze in de eerste plaats mobiel zijn; mobiele gebruikers hebben vaak niet de 

tijd, of de comfortabele bureau-omgeving, om te interageren met mobiele applicaties. Om met zulke 

limitaties om te gaan kan de context van de mobiele gebruiker benut worden. Context wordt 

gedefinieerd als eender welk stuk informatie gerelateerd aan de interactie met de applicatie, 

inclusief informatie over de omgeving van de gebruiker, de gebruiker en het toestel zelf. Door 

automatisch informatie en diensten aan te bieden gerelateerd aan de huidige gebruiker’s context, 

kunnen mobiele interacties verder gefaciliteerd worden. Bijvoorbeeld, wanneer rekening gehouden 

wordt met de huidige omgeving en voorkeuren van de mobiele gebruiker, kan hij op de hoogte 

gebracht worden van nabije winkels die producten verkopen op zijn boodschappenlijst, of nabije 

openbaar vervoerstations die ritten aanbieden terug naar zijn hotel. 

In deze dissertatie stellen we een client-side raamwerk voor om context aan te leveren aan mobiele 

applicaties, waarbij recente evoluties in mobiele technologie en het Web benut worden. Dankzij de 

toename in mobiele verwerkingskracht en geheugencapaciteit, kunnen computationeel intensieve 

taken, zoals de interpretatie, integratie en disseminatie van context, lokaal op het mobiele toestel 

uitgevoerd worden. Voorts wordt het machine-leesbare Semantic Web, de volgende stap in de 

evolutie van het Web, gebruikt als online platform voor het verkrijgen van context data. Veel nuttige 

context informatie, die personen, plaatsen en dingen in de omgeving van de gebruiker beschrijven, is 

namelijk reeds beschikbaar in de vorm van kleine, machine-leesbare online web bronnen, inclusief 

websites (bijv., van winkels, monumenten) en online RDF bestanden (bijv., persoon profielen). 

Aangezien websites meer en meer semantisch geannoteerd worden, waarbij de betekenis van de 

inhoud expliciet gemaakt wordt, zijn veel van deze websites geëvolueerd tot volwaardige 

semantische data bronnen. Om transparente en geïntegreerde query toegang tot zulke kleine online 

semantische bronnen te verkrijgen, stelt deze dissertatie verder een mobiele, client-side query dienst 

voor. Deze query dienst omvat indexering en caching componenten om het queryen van zulke online 

datasets mogelijk te maken op mobiele toestellen. 
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Chapter 1  

Introduction 

1.1 Research context 
The capabilities of mobile devices continue to increase with leaps and bounds. Advances in mobile 

hardware include increased processing power, memory capabilities and battery life, accompanied by 

improved screen quality and size. Devices are also outfitted with various sensing capabilities, 

including GPS, cameras and Radio Frequency IDentification (RFID) readers, allowing interaction with 

the environment and capturing mobile context. In addition, mobile wireless connectivity has 

approached broadband speeds and is now virtually ubiquitous, with the widespread deployment of 

WiFi and 3G/4G networks. Due to all these factors, mobile devices have become extremely popular 

consumer products, and are being used anywhere and anytime to perform any task. Recent studies 

show that more mobile devices are currently being sold than PCs1, and revenues from mobile 

internet usage are estimated to overtake fixed broadband revenues by 20142. 

In order to aid mobile users in performing their tasks, a number of research domains focus on 

tailoring device interactions to mobile users’ needs. Since user input is still relatively cumbersome, 

techniques such as multi-touch, gesture and voice recognition are applied to facilitate executing 

actions [1, 2]. Accessibility support is provided to meet the needs of certain groups of users, such as 

elderly and disabled people [3, 4]. In addition, mechanisms are available to reduce mobile interaction 

obtrusiveness to suit the user’s current situation (e.g., in a meeting) [5, 6]. This research in mobile 

interaction tailoring is being increasingly applied to the commercial devices. For instance, the 

Samsung Galaxy S3 model3 supports a range of multi-touch interactions to perform much-used 

                                                           
1
 http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011, Smart phones overtake client 

PCs in 2011, Canalys, February 2012 (access date: 05/06/2013) 
2
 http://www.pwc.com/gx/en/global-entertainment-media-outlook/segment-insights/internet-access.jhtml, 

PwC Global Entertainment & Media Outlook 2013-2017 (access date: 05/06/2013) 
3
 http://www.samsung.com/global/galaxys3/ (access date: 05/06/2013) 

http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.pwc.com/gx/en/global-entertainment-media-outlook/segment-insights/internet-access.jhtml
http://www.samsung.com/global/galaxys3/
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actions; gestures such as putting the device face-down to quickly ignore obtrusive calls; and 

accessibility support, ranging from larger font sizes to audible feedback for vision-impaired users. 

Despite these efforts, inherent limitations still remain. At any time and any place, mobile users often 

do not have sufficient time, or the comfortable setting, to comprehensively interact with their mobile 

device (e.g., at a bar, waiting for the train). To further facilitate mobile interactions, the mobile user’s 

context can be leveraged. In context-aware computing, context is defined as any piece of information 

related to the human–computer interaction [7]. By utilizing context information, applications can 

automatically enhance interaction with the user, for instance by presenting useful information and 

services, or fine-tuning service behavior. In mobile settings, context information useful for enhancing 

mobile interactions (including current location and surroundings) continuously becomes available. 

Furthermore, the utility of mobile context-awareness is illustrated by other early examples of 

context-aware systems, such as mobile tourist guide systems [8, 9]. The particular context-aware 

settings that we envision can be described as follows.  

In mobile, context-aware scenarios, thousands of physical entities (i.e., people, places and things) are 

encountered by the mobile user as he is walking around. These entities each may have associated 

descriptions (e.g., personal profile, monument history), which collectively describe the user’s 

surroundings (or environment) and represent its environment context. By supplying this kind of 

environment context to mobile applications, interaction can be enhanced. For instance, mobile users 

can be automatically notified of useful entities, such as interesting people at a conference, or shops 

selling products on his shopping list. By investigating the mobile user’s environment, his current 

situation can be inferred (e.g., at meeting), allowing the obtrusiveness of mobile interactions to be 

adapted accordingly (e.g., reducing auditory to visual signals). During web browsing, page elements 

related to the user’s current environment, such as products sold by nearby shops or nearby 

restaurants during dinner time, can be highlighted. Currently, an excellent opportunity exists to 

exploit novel mobile sensing capabilities (e.g., RFID/NFC, GPS, camera, Bluetooth) to accurately 

capture the user’s coordinates (e.g., via GPS) and unique object identifiers (e.g., via RFID/NFC) to 

enable the identification of the environment context. 

Mobile context-acquisitioning systems encapsulate all the tasks required to realize such scenarios, 

including the capturing of context (e.g., current GPS coordinates), interpretation (e.g., inferring 

nearness to physical entities), integration (e.g., combining context from multiple sources) and 

dissemination (i.e., supplying the collected context to mobile applications). In doing so, these 

systems relieve mobile applications from the complexity of these tasks. For most existing systems, 

the underlying design rationale is the need for “thin” clients; resulting in the outsourcing of 

computationally intensive tasks to an external infrastructure, thus relieving the mobile devices of 

these tasks [10, 11]. This architecture design is called centralized, since all mobile clients 

communicate with an external, centralized entity (e.g., deployed on external servers or cloud 

service), which performs most or all context-acquisitioning tasks. To deal with issues resulting from 
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such centralized architectures, including infrastructure requirements, server disconnections, privacy 

and context dynamicity, some approaches focus on delegating tasks to the mobile device [12, 13].  

Web technology offers excellent advantages to mobile computing [14]. Due to the ubiquity of WiFi 

and 3G/4G, combined with the global URL addressing scheme, useful web resources can be 

transparently accessed anywhere and at any time. As virtually any mobile platform supports the 

open web standards and protocols, no additional software needs to be installed. The next step in the 

evolution of the web, the Semantic Web, presents even more benefits. In the Semantic Web, explicit 

semantics are assigned to web resources, making them machine-readable and thus directly 

consumable by software clients. In this vein, Semantic Web technology can be very useful in 

achieving mobile context-awareness. By leveraging the Semantic Web as an online information 

platform, relevant web resources can be directly re-used as machine-readable context information 

[12]. For example, this includes online semantic data on nearby people, places and things (i.e., 

physical entities). Semantic Web technology is also excellently suited to represent context 

information in general [11, 15]. As the meaning of the sensed context is made explicit, higher-level 

context data can be inferred by utilizing built-in reasoning mechanisms. By relying on domain-specific 

ontologies, context requests can be formulated independent from system-specific APIs [16]. Such 

ontologies, in combination with unique resource URIs, also facilitate data integration from 

heterogeneous context sources [12]. Other mobile computing domains also recognize the 

advantages of Semantic Web technology, such as mobile augmented reality [17, 18] and social 

networking [19].  

The Semantic Web has grown tremendously over the last ten years, meeting the demand for freely 

available, machine-readable online data. Large data sources are being put online in semantic format, 

such as DBPedia4 and LinkedGeoData5, which collectively contain over a billion RDF statements. An 

increasing amount of websites are being enhanced with semantic annotations (e.g., RDFa [20], 

microdata [21]); due to their explicit content semantics, such websites can also be considered part of 

the machine-readable Semantic Web. The Web Data Commons initiative found that close to 13% of 

crawled webpages contain semantic annotations6. Online RDF files, for instance containing shop 

catalogues (e.g., via DCMI [22]) and personal profiles (e.g., via FOAF [23]), also form a large part of 

the Semantic Web. Sindice7, a Semantic Web search engine, currently indexes ca. 708 million online 

Semantic Web documents. 

1.2 Problem statement 
Mobile context-provisioning frameworks encapsulate all required tasks to realize context-aware 

scenarios (such as illustrated in the previous section). These software frameworks perform a variety 

                                                           
4
 http://dbpedia.org (access date: 28/04/2013) 

5
 http://linkedgeodata.org/ (access date: 13/06/2013) 

6
 http://webdatacommons.org/2012-02/stats/stats.html (access date: 28/02/2013) 

7
 http://sindice.com/ (access date: 28/02/2013) 

http://dbpedia.org/
http://linkedgeodata.org/
http://webdatacommons.org/2012-02/stats/stats.html
http://sindice.com/
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of context-acquisitioning tasks, such as interpreting, integrating and disseminating context data. Two 

important observations can be made about these systems. In order to relieve the client-side from 

these computationally intensive processes, many systems have a centralized architecture, whereby 

mobile clients communicate with an external, centralized infrastructure performing all relevant tasks 

(e.g., a server). Secondly, in order to retrieve dynamic (e.g., sensor readings) and static (e.g., place 

descriptions) context data, these systems typically rely on distributed context provider components. 

Below, we elaborate on problems resulting from these observed properties. 

Typically, so-called context provider components are responsible for supplying both dynamic and 

static context data to context-provisioning systems, which then perform interpreting and 

disseminating tasks. Context providers supplying static context data usually rely on a database [10, 

24] or RDF repository [16] to store the data. In other cases, all static context data is stored in a 

central information system, which is directly accessible by the context-provisioning system [25–27]. 

In order to ensure accurate and up-to-date information, these kinds of approaches require content 

providers for data entry, for instance place owners or touristic services [25]. It can however be 

observed that much information on places and things is already available on the Web, typically in the 

form of websites. As mentioned, an increasing number of websites are being semantically annotated 

(e.g., using RDFa), making them a source of machine-readable context data. Other online Semantic 

Web sources, such as RDF files and large online datasets (e.g., DBPedia, LinkedGeoData), may also 

capture information on places and things. Consequently, these context provider approaches usually 

result in data duplication. Content providers will often find themselves updating two sources of 

information; their own online web presence (e.g., website, RDF data) and the centralized information 

system or particular context provider. Compounding matters, these systems or components typically 

represent closed data silos, where only proprietary software can access the information. This 

presents a larger participation threshold for content providers, compared to putting online 

information on freely accessible web servers.  

Many systems delegate computationally intensive work towards an external infrastructure, including 

context interpretation, integration and provisioning tasks. Such architecture designs result in “thin” 

client applications, with only minimal processing, memory and storage footprints, which nevertheless 

have access to powerful context capturing functionality. However, this outsourcing also has its 

drawbacks. Infrastructure costs are incurred, especially when ensuring scalability and robustness via 

a redundant set of servers. Even when the offloaded tasks are outsourced to a third party such as 

cloud services, subscription costs will be charged. Furthermore, dynamic context sensed by the 

mobile device needs to be uploaded to the server, raising serious privacy concerns in some cases 

(e.g., location updates) [13]. In case connection to the server is lost, which may occur frequently in 

mobile settings, not even partial context-aware functionality can be offered [12]. As mobile device 

capabilities have increased greatly in the last years, the arguments for lightweight clients are rapidly 

evaporating. For instance, recent high-end mobile devices boast 1,5-2 Ghz quad-core processors and 

2Gb RAM; configurations that were only introduced in mainstream high-end laptops and desktop 

computers a couple of years ago. By exploiting the computational power of mobile devices, the 
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aforementioned problems with infrastructure costs, privacy, context dynamicity, and connection loss 

can be significantly reduced. 

In conclusion, traditional solutions to context provisioning, where separate proprietary systems keep 

static context information, and computational work is outsourced to external infrastructures, are 

becoming less and less relevant. Machine-readable online semantic data, associated with people, 

places and things, can be re-used as location-related context data, removing the need for closed 

information silos. Moreover, by leveraging current mobile device capabilities and moving context-

provisioning tasks to the client side, problems related with centralized architectures can be avoided. 

1.3 Goal 
The aim of this dissertation is to investigate the possibilities of client-side context provisioning in a 

mobile setting, whereby existing online semantic data is used as context information. An essential 

part of the research will consist of achieving transparent and integrated query access to such 

semantic data, originating from different online semantic sources. In particular, we focus on small 

online RDF sources put online by the various content providers (e.g., place owners), such as online 

RDF files and semantically annotated websites (e.g., via RDFa).  

Important goals include: 

- Performing relevant computational tasks, including context interpretation, integration and 

provisioning, as well as context sensing, on the mobile device; 
 

- Interpreting raw context data (e.g., GPS readings) and provide it as high-level spatial 

information, indicating proximity or containment between the user and physical entities; 
 

- Leveraging the Semantic Web as an information platform, allowing online semantic data to 

be directly used as context information; 
 

- Supplying transparent and integrated query access to online semantic data, originating from 

multiple small online semantic sources (e.g., RDF files, websites); 
 

- Providing expressive and integrated query access to the collected context information, both 

in a pull- and push-based way. 

1.4 Approach 
This dissertation presents a mobile, client-side context-provisioning framework called SCOUT 

(Semantics-based COntext-aware Ubiquitous scouT). SCOUT focuses on providing context 

information describing the user’s environment; specifically, descriptive information on physical 

entities (i.e., people, places and things) in the user’s vicinity. SCOUT collects, integrates and 

provisions this context information in a high-level way, via pull- and push-based SPARQL query 
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access. As a client-side approach, SCOUT does not require an external infrastructure to outsource 

computational tasks or for centralized data storage. Instead, context sensing, interpretation and 

provisioning tasks are performed locally. This context-provisioning approach is called non-centralized, 

as no external, centralized entity is responsible for performing context-acquisitioning tasks. Instead, 

the mobile client devices themselves perform all relevant tasks locally. 

At the same time, the Semantic Web is leveraged as an information system to obtain the required 

context information, namely descriptive information on nearby physical entities. In particular, we 

focus on small online semantic sources associated with physical entities (e.g., FOAF profiles, 

semantically annotated websites describing places and things). This presents content providers (e.g., 

shop owners, tourist services) with the opportunity to keep a single, machine-readable online 

information source up-to-date, utilizable by multiple approaches. Figure 1-1 illustrates this situation, 

where physical entities (e.g., people, monuments, restaurants) are described by associated online 

semantic sources. We detail other parts of the figure in the paragraphs below. 

 

Figure 1-1. General approach overview. 

The SCOUT framework features a layered architecture, reflecting its bottom-up approach to context 

acquisition. The bottom layer, the Detection Layer, is responsible for discovering location-related, 

online semantic data. For this purpose, SCOUT relies on various interchangeable detection 
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techniques. A first set of techniques rely on tagging technologies such as RFID and QR codes. This is 

exemplified in Figure 1-1, where physical entities are tagged with QR codes, RFID tags and Bluetooth 

beacons, and the mobile device is outfitted with sensing technologies such as a camera, RFID reader 

and Bluetooth component. By utilizing these technologies, physical entities can be detected (i.e., by 

detecting their tags) and the associated online semantic sources can be located (e.g., by decoding the 

QR code or reading the RFID tag). Other detection techniques contact online semantic datasets such 

as LinkedGeoData, which, given the user’s current GPS position, return summary information on 

nearby physical entities, including locations of associated online semantic sources.  

The second layer, the Spatial Layer, is responsible for inferring high-level spatial information, based 

on sensing information from the Detection Layer (e.g., GPS coordinates, RFID detection distance). In 

order to represent spatial information in a high-level way, so-called spatial relations are kept 

between RDF resources representing the user and related physical entities, either denoting nearness 

or containment. Figure 1-1 illustrates such relations, where the mobile user was previously nearby 

the Atomium, and currently inside a restaurant and nearby another person (e.g., having lunch 

together). Certain low-level detection info (e.g., GPS readings) is also stored for each spatial relation, 

which may be useful for certain applications (e.g., for showing a map view). Mechanisms are in place 

to keep these spatial relations up-to-date, invalidating them in case the entities in question are no 

longer spatially related (i.e., nearby or contained). 

Finally, the Environment Layer represents the most challenging layer. Based on the spatial relations 

and discovered online semantic data, it constructs and maintains an abstract Environment Model. 

Mobile applications may pose push- and pull-based semantic queries to this model, in order to 

reference any part of the user’s current and past physical surroundings. For instance, Figure 1-1 

shows a tourist and shopping mobile app relying on SCOUT to gain push- and pull-based query access 

to the user’s collected context, respectively to find nearby points-of-interest and shops selling useful 

products. All context information, both internal data and data provisioned to applications, is 

represented using Semantic Web technology.  

An important part of the Environment Model comprises the detected online semantic data, 

describing the user’s current and past surroundings. Clearly, as the mobile user is moving around, 

this online dataset will grow to contain large amounts of data (i.e., more than 100Mb). Two 

observations can be made:  

- Queries cannot simply be executed on the entire dataset, due to limitations in memory and 

processing capabilities. Instead, queries should be performed only on the part of the dataset 

containing query-relevant information. 
 

- Downloading the entire online dataset for each individual query would lead to unacceptable 

performance. On the other hand, the dataset should also not be stored entirely on the 

mobile device, to minimize the storage footprint and cope with devices with limited storage. 
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Therefore, a straightforward solution, whereby all collected context is stored on the device and all 

queries are resolved on the entire dataset, is not an option.  

For this purpose, this dissertation presents a mobile query service. This general-purpose query 

service enables the transparent and integrated querying of large amounts of online semantic data, 

originating from relatively small sources (e.g., RDF files, semantically annotated websites). As was the 

case for SCOUT, this integrated querying approach is deployed on the client-side. As illustrated in 

Figure 1-1, SCOUT relies on this query service to gain integrated query access to online data 

describing the user’s surroundings. In doing so, SCOUT acts as a client of the mobile query service. 

Note that, due to the general-purpose nature of the query service, any system can act as client to 

gain integrated query access to an online semantic dataset. 

In response to the aforementioned observations, the query service comprises two key components: 

1/ a source identification component, to identify query-relevant parts of the online dataset;  

2/ a cache component, which locally stores data likely to be re-used in the future.  

In order to optimize data access, while still requiring only minimal processing and memory, the query 

service focuses on exploiting the semantics of RDF(S)/OWL data. More specifically, the source 

identification component indexes source metadata combinations (i.e., predicates, types) to perform 

the identification task; and one of the developed cache components organizes the cached data via 

shared source metadata. In fact, multiple variants of each component were developed keeping 

varying amounts of source metadata (or none at all), in order to investigate the utility of source 

metadata in optimizing data access (see also section 1.4.1 on experimental validation). In order to 

locally query the identified / cached semantic source data, the query service relies on an existing 

mobile query engine (e.g., Androjena8, RDF On The Go [28]). 

Moreover, the components are fine-tuned to our setting where data is captured in online files. In 

particular, we present a novel cache removal strategy called Least-Popular-Sources (LPS). In this 

strategy, cached source data is removed on a per-source level, independent of the actual cache 

organization. To determine candidates for removal, certain data properties and relations of source 

data are taken into account, as well as the time to re-download the source. Finally, the query service 

provides configurable support for the Semantic Web’s Open World Assumption. 

The SCOUT framework and mobile query service are implemented for the mobile Android OS, and 

currently support Android version 4.1.2 (Jelly Bean) with API level 16. 

1.4.1 Validation 

First, we present three mobile client-side applications, which rely on the SCOUT pull- and push-based 

context access to realize their own functionality. These applications, each with their own 

                                                           
8
 http://code.google.com/p/androjena/ (access date: 09/06/2013) 

http://code.google.com/p/androjena/
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contributions in their respective fields, serve as proof-of-concepts of the SCOUT framework. Below, 

we shortly summarize these applications: 

- COIN: COIN (COntext-aware INjection) [29] is a mobile client-side web augmentation 

approach, which automatically injects context-aware and personalized features into visited 

webpages. For instance, this includes annotating webpage content relevant to the user’s 

current location, such as products sold by nearby shops. To achieve this adaptation, COIN 

requires descriptive information on the user’s surroundings, as well as push-based access to 

keep features up-to-date. 
 

- AdaptIO: AdaptIO [30] is a mobile system that automatically adapts the obtrusiveness of 

mobile interactions to suit the user’s current situation. For instance, this includes reducing 

auditory notifications to a screen flash and icon while the user is in a meeting. To determine 

the user’s current situation (e.g., in a meeting), AdaptIO requires descriptive information on 

the user’s physical surroundings (e.g., whether he is in a meeting room), and needs to be 

kept up-to-date to determine their most recent situation. 
 

- Person Matcher: the Person Matcher [31] computes the “compatibility score” between the 

user and people he encounters, based on overlaps between their FOAF networks. Example 

overlaps include having a friend in common, or sharing the same alma mater. The Person 

Matcher requires expressive push-based query access to be alerted whenever people are 

discovered in the vicinity, and to gain access to their online FOAF profile. 

Second, we executed an extensive series of experiments to evaluate the performance of the mobile 

query service. We extracted a realistic query dataset consisting of 5000 RDF files measuring 526 Mb 

in size, which was partly obtained from the Billion Triple Challenge 2012 Dataset9. In order to 

evaluate the utility of source metadata (i.e., predicates, types) in optimizing data access, we 

evaluated different variants of the two components, namely the source identifier and cache.  

1.5 Advantages 
The outlined approach has a number of advantages compared to the state of the art, which we 
elaborate below. 

- By deploying our solution on the client-side, we gain the following advantages: 
 

 No infrastructure costs: No external infrastructure for data storage or task outsourcing is 
required. As such, no server infrastructure or cloud service costs are incurred; 
 

 Avoid centralization-related issues: Problems related to centralized context acquisition 

architectures, such as privacy concerns, dynamicity of context data, and connectivity issues, 

are avoided. 
 

                                                           
9
 http://km.aifb.kit.edu/projects/btc-2012/ (access date: 09/06/2013) 

http://km.aifb.kit.edu/projects/btc-2012/
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- Leveraging the Semantic Web as an information platform yields the following advantages: 
 

 Avoid data duplication: in most cases, content providers (e.g., place owners, tourist services) 
already have a separate online (semantic) data source describing the place or object they are 
responsible for (e.g., shop, tourist attraction). In case of semantically annotated websites, 
which are both human-readable and consumable by software agents such as SCOUT, content 
providers only need to supply and keep up-to-date a single data source; 
 

 Reduce participation threshold: by letting content providers upload their data to any freely 
accessible web server, instead of a closed, proprietary system, the threshold to contributing 
data is reduced. 

 

- Utilizing Semantic Web technology to represent context leads to the benefits below:   
 

 Generic context requests: No system-specific APIs need to be used to obtain context 
information. Instead, context information requests are formulated using well-known, domain-
specific ontologies; 
 

 Leverage technology features: Knowledge sharing is made possible, as well as reasoning and 
inferring new context data; 
 

 Facilitate data integration: Integrating data from heterogeneous sources is facilitated, due to 
the use of well-known, domain-specific ontologies (in case multiple ontologies overlap, 
ontology alignment approaches can be employed) and the URI identification scheme that 
uniquely identifies each web resource; 
 

 Support Open World Assumption: Any new data source can add information on previously 
found web resources, due to the Semantic Web’s Open World Assumption. 

 

- Our focus on supplying location-related context data, discovered using different sensing 
technologies (e.g., tag readers, GPS), yields the following advantages: 

 

 Support heterogeneous environments: By utilizing multiple sensing technologies (RFID, QR, 

GPS) interchangeably and in parallel, physical surroundings not outfitted with tags or lacking 

positioning support (e.g., not covered by online datasets such as LinkedGeoData) are still 

supported; 
 

 High-level spatial information: Applications can easily obtain location-related context 

information while abstracting from low-level details (e.g., GPS readings), by referencing 

spatial relations indicating proximity or containment between physical entities and the user.  
 

- By supplying push-and pull-based, integrated semantic query support, the following benefits are 
gained:   

 

 Integrated query access: Mobile applications can pose arbitrarily complex semantic queries, 
referencing any part of the user’s current and past environment; 
 

 Reactive to context changes: Applications can become reactive to changes in the user’s 
context, via the provided push-based query support. 
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1.6 Contributions 
The contributions of this dissertation can be divided into primary and secondary contributions. 

Primary contributions concern research related to the SCOUT framework and mobile query service. 

Secondary contributions pertain to research related to the approaches utilizing the SCOUT 

framework. 

1.6.1 Primary contributions 

The primary contributions of this dissertation concern both the mobile, context-provisioning SCOUT 

framework and the mobile query service. Below, we elaborate on both sets of contributions. 

Mobile SCOUT framework 

- We present a mobile, client-side context-provisioning framework, which runs entirely on the 

mobile device and requires no external infrastructure. As such, it avoids the issues related with 

centralized architectures, such as scalability, privacy and connectivity issues.  
 

- A context detection mechanism is proposed utilizing multiple detection techniques (e.g., utilizing 

RFID or GPS) interchangeably and in parallel, allowing SCOUT to be deployed in a range of 

heterogeneous environments supplying different context sensing infrastructures (e.g., RFID, QR, 

Bluetooth tags). 

 

- The Semantic Web is leveraged as an information platform, to obtain descriptive information on 

the user’s environment. As a result, SCOUT does not rely on external context providers (pre-

registered with the system) or proprietary information systems, which is typically the case in the 

state of the art. 
 

- In SCOUT, spatial data is represented in a high-level way, via spatial relations linking nearby or 

contained physical entities. We present a mechanism to actively keep these spatial relations up-

to-date, based on sensor data of varying accuracy (e.g., GPS coordinates, RFID detection 

distance). 
 

- SCOUT supplies push-and pull-based, integrated semantic query support to the user’s collected 

environment context. To the best of our knowledge, no current work exists that supplies such 

push-based, integrated semantic query access. 

Mobile query service  

- We present a mobile, client-side query service that allows for the transparent, integrated 

querying of large amounts of small online sources. Configurable support for the Semantic Web’s 

Open World Assumption is provided. Importantly, this query service runs entirely on the mobile 

device, performing the source identification and local caching tasks (described below) at the 

client side.  
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- An indexing component is presented, which indexes metadata from online sources and identifies 

query-relevant data sources. By focusing on schema-level information, this index reduces 

memory and processing requirements  while still allowing for high source selectivity. Typically, 

related work focuses on indexing data that is more resource-intensive to extract and store, such 

as instance data (i.e., RDF resources) or resource constraints. 
 

- We demonstrate a caching component that caches source data for later re-use in query 

resolution. The cached data is organized via shared metadata, which enables fine-grained data 

retrieval while still reducing performance overhead. To our knowledge, the state of the art does 

not include works that organize the cache via the inherent semantics of data (i.e., types, 

predicates).  
 

- A novel cache removal strategy is introduced, fine-tuned to our specific setting where data is 

captured in small online files. In such a setting, cache misses incur a large retrieval overhead due 

to source download times. To alleviate this issue, this removal strategy aims to reduce the 

number of cache misses (i.e., removed cached data referenced by a new query) and their 

associated source re-downloads. 
 

1.6.2 Secondary contributions 

The approaches utilizing the SCOUT framework have made contributions of their own to their 

respective research domains. Below, we mention these contributions briefly:  

- Person Matcher: the Person Matcher [31] represents the first proof-of concept regarding the 

supplied SCOUT functionality. In particular, it stands for a mobile application that automatically 

finds interesting people in the user’s vicinity. Given two FOAF profiles, one belonging to the user 

and one to a nearby person, it performs a detailed compatibility check. To realize its 

functionality, the Person Matcher relies on the pro-active data filtering supplied by SCOUT, in the 

form of push-based query support. More specifically, the application registers to be notified 

when a person with a FOAF profile becomes nearby. We presented a matching algorithm to 

perform a detailed crawling to find connections between the two FOAF networks. A connection is 

found when the first person is linked to the second person, either directly (e.g., via foaf:knows10) 

or indirectly (e.g., by co-authoring a document, as indicated by foaf:made11). 
 

- COIN: COIN is a mobile, client-side approach to make existing websites context-aware, which is 

achieved via the on-the-fly injection of context-aware features. The initial approach, together 

with a prototype implementation, was proposed in [32]. Later on, a generic, conceptual 

framework for the approach was presented [29], including requirements for this type of 

approach, applicable adaptation methods, and an elaborated description of the general 

approach. The main contribution of COIN is that, in contrast to most existing adaptation 

                                                           
10

 http://xmlns.com/foaf/spec/#term_knows (access date: 11/08/2013) 
11

 http://xmlns.com/foaf/spec/#term_made (access date: 11/08/2013) 

http://xmlns.com/foaf/spec/#term_knows
http://xmlns.com/foaf/spec/#term_made
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approaches, it does not require a pre-engineering of the website. Instead, COIN automatically 

adds context-aware features to existing websites on-the-fly, as the user is visiting the page. To 

achieve this, the approach needed to be deployed at the client side, which was facilitated by 

relying on SCOUT as a client-side context-provisioning framework. 
 

In fact, the COIN approach was motivated by the increased availability of semantic annotations in 

websites (e.g., RDFa)12. Due to its explicit semantics, context-relevant webpage content can be 

automatically identified and enhanced with context-aware features. As such, COIN represents an 

alternative way of exploiting semantically annotated websites. Instead of utilizing them as online 

semantic data sources (i.e., by extracting RDF data) as SCOUT currently does, COIN enhances the 

user’s browsing experience while visiting such annotated websites. 
 

- AdaptIO: AdaptIO [33] is an existing system, which automatically adapts the obtrusiveness of 

mobile interactions to suit the mobile user’s situation. In collaboration with the original authors, 

the approach was extended to introduce a novel contribution; namely, supporting interaction 

adaption in dynamically discovered, a priori unknown environments [30]. This contribution was 

made possible via the SCOUT framework, which provisions environment context across 

heterogeneous environments with minimal infrastructure. To realize the extension of the 

approach, major changes needed to be made to the methodology and implementation. Firstly, 

the user was put in charge of defining his own situations (e.g., at work, in a quiet place) via a 

mobile interface. This avoided reliance on designer knowledge or machine-learning tools, which 

would be problematic in previously unknown environments. Secondly, the AdaptIO system was 

moved from the OSGi13 platform to the mobile device, ensuring autonomy in environments 

lacking OSGi middleware.  
 

1.7 Outline 
The dissertation is structured as follows. 

Chapter 2 provides background and related work. We present related work in mobile context-aware 

computing and correlate it to the SCOUT context-provisioning framework. Furthermore, we 

elaborate on the state of the art in related fields concerning data indexing and caching, which are the 

two main tasks performed by the mobile query service. 

Chapter 3 describes the SCOUT mobile context-provisioning framework. An overview of the layered 

SCOUT architecture is given. Each layer is described in detail, including the Detection Layer, Spatial 

Layer and Environment Layer. Data structures, processes and supported technologies are elaborated 

for each layer, as well as the communication interfaces between the different layers. 

                                                           
12

 Alternative, yet less practical ways of obtaining webpage content semantics are also discussed; e.g., via site-
specific wrappers. 
13

 http://www.osgi.org/ (access date: 09/06/2013) 

http://www.osgi.org/
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Chapter 4 presents the mobile query service, which provides transparent, integrated querying 

support for large amounts of small online RDF sources. The chosen approach is outlined and 

motivated, while issues, challenges, and requirements are formulated as well. Afterwards, each 

query service component is discussed in detail. We discuss how the Open World Assumption is 

supported by the mobile query service, thus allowing for robust data exploration. Throughout the 

chapter, we indicate the various optimizations required to deploy the query service on Android 

mobile devices. 

Chapter 5 describes the performance experiments conducted to evaluate the query service in mobile 

querying scenarios. We elaborate on the experimental setup, including the querying scenario and 

real-life experimental dataset. Each query service component, including different component 

variants, is extensively evaluated. The chapter further reflects on the experimental results. 

Chapter 6 discusses three approaches that leverage SCOUT to obtain expressive push- and pull-based 

query access to context information. In particular, the chapter summarizes each approach, sketches 

its main contribution to the respective research domain, and describes how the approach utilizes the 

SCOUT framework. 

Chapter 7 deliberates the research results of this dissertation. We provide a summary of the work 

presented in the dissertation, accompanied by contributions, limitations and future work. 



 

  



 
 

  



 

Chapter 2  

Background and related 
work 

The previous chapter introduced this dissertation. We discussed the research context, identified 

problems in state of the art, and presented our goals and resulting approach. Additionally, we 

discussed the benefits and delineated the contributions of our work.  

In this chapter, the necessary background and state of the art is given to place this dissertation in a 

broader perspective. This chapter is structured as follows. Section 2.1 starts by presenting 

background, elaborating on existing classifications of context and context-awareness (section 2.1.1) 

as well as linking mechanisms between the physical and virtual world (section 2.1.2). Section 2.2 

continues with the state of the art. Firstly, we discuss the usage of Web and Semantic Web 

technology in mobile computing (sections 2.2.1 and 2.2.2). Afterwards, we move on to aspects of 

related work where this PhD dissertation made significant contributions. In particular, sections 2.2.3 

to 0 elaborate on context-capturing and provisioning features exhibited by SCOUT, while sections 

2.2.8 and 2.2.9 detail data indexing and caching, two domains concerning the mobile query service. 

In section 2.3, we compare our work to background and related work. This involves positioning the 

SCOUT framework with regards to the introduced context classifications (section 2.3.1), and 

indicating our core contributions to the state of the art (sections 2.3.2 to 2.3.8). Additionally, we 

present a concrete overview of the extent to which other approaches support the features 

contributed by this dissertation (section 2.3.9). Finally, section 2.4 summarizes this chapter. 
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2.1 Background 
In this section, we elaborate on background related to the SCOUT context-provisioning framework, 

including definitions of context and context-awareness (section 2.1.1) and linking mechanisms 

between the physical and virtual world (section 2.1.2). 

2.1.1 Context and context-awareness 

An often-referenced definition of context is “Any information that can be used to characterize the 

situation of an entity. An entity is a person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user and the applications themselves” 

[7]. Context information can further be classified into four primary context types [7], namely location 

(where), identity (who), time (when) and activity (what; i.e., what the entity is doing). A more recent 

work [34] represents context in an n-dimensional space, where each dimension represents a context 

type (or facet), and a vector in this space characterizes a context situation. Five context facets are 

suggested; network profile, user description/preferences, terminal (device) characteristics, location, 

and environment (i.e., physical context properties, for instance captured by sensors). 

A context-aware application may exploit the user’s context in various ways. The first published 

definition (to our knowledge) described context-aware applications as software that “adapts 

according to its location of use, the collection of nearby people and objects, as well as changes to 

those objects over time” [35]. As this definition does not cover non-adaptive software, for instance 

displaying context information, this definition was later generalized to: “A system is context-aware if 

it uses context to provide relevant information and/or services to the user, where relevancy depends 

on the user’s task” [7]. In the same vein, [36] differentiates between context-enabled and context-

aware applications, whereby the former display and store context information, and the latter adapt 

their behavior to user context. When however considering more recent context-aware applications, 

we observed that the above definition is still not broad enough. For instance, it does not cover 

applications pro-actively notifying the user of information or services related to the current context 

[30], which are not necessarily related to his current task (e.g., serendipitously finding nearby shops 

selling products on the user’s shopping list). Clearly, any context-awareness definition has the risk of 

being quickly outdated. As such, we propose a very broad definition, namely “Applications are 

context-aware in case they consume context information, and utilize it in some way to realize their 

functionality”.  

Context-aware applications may exhibit various features. An initial taxonomy defined two orthogonal 

feature dimensions [35], namely information/services and manual/automatic. In the manual case, 

applications present information (e.g., list of people) or services (e.g., list of printers) to the user, 

whereby items related to the user’s context are emphasized (e.g., nearby people and printers). In the 

automatic case, applications directly retrieve certain information (e.g., the profile of a nearby 

person) or directly execute a particular service (e.g., print on nearby printer), based on the available 

context. Later on, an additional “contextual augmentation” feature was introduced [37], associating 
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digital information with the user’s context (e.g., leaving virtual stick-e notes to physical places). Over 

the years, more advanced context-aware features have been applied, such as automatic features 

based on current user activity (e.g., rejecting phone calls [38]) or automatically pushing location-

relevant virtual notes [39, 40]. As such, it can be said that any (sufficiently fine-grained) context-

feature taxonomy will again be quickly outdated as new innovative approaches are developed.  

Context-aware mechanisms are of high value in mobile computing, as it is desirable that applications 

react to their current location, time and other environment attributes on mobile devices [41, 42]. In 

fact, context-awareness is most relevant when the user is mobile, due to the resulting high 

dynamicity of context data [43]. In line with these observations, a large amount of context-

provisioning approaches have been developed for mobile settings. When discussing state of the art, 

we elaborate on mobile context-provisioning aspects related to the SCOUT framework (sections 2.2.3 

to 0). 

2.1.2 Linking mechanisms 

In order to collect context information describing the user’s surroundings, SCOUT discovers links 

between physical entities and associated online information. In this section, we discuss existing 

mechanisms to link the physical to the virtual world.  

In [44], a classification of linkage mechanisms is presented to link physical entities to virtual 

counterparts, be it associated digital information or services. These include:  

1/ Tagging, where an identification tag (or beacon) is attached directly on or nearby the entity and 

loaded with (links to) associated data (e.g., URL). For instance, technologies such as Radio-Frequency 

Identification / Near Field Communication (RFID / NFC), Infrared (IR) or Bluetooth can be used.  

The CoolTown project [14, 44–47] relies on tagging, in order to link physical entities to online web 

resources (via URLs stored on tags). For example, this includes linking a printer to a webpage 

providing troubleshooting info and/or printing services. A more recent commercial initiative was 

Touchatag14 from Alcatel Lucent, which linked RFID tags to online application actions. For instance, a 

physical cube could be outfitted with RFID tags on each side, where each tag can be read by an RFID 

reader to invoke online multi-media player actions (e.g., play, stop). Quick Response (QR) codes are 

put on a physical entity, and can be scanned by a camera and decoded to concrete content. In 

practice, QR codes often resolve to an online location (i.e., URL) supplying more information on the 

scanned object. Microsoft Tag15 supplies a commercial suite of tools to easily create tags (Microsoft 

Tags, QR codes, NFC tags) and manage the associated online content. 
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 http://store.touchatag.com/ (access date: 06/06/2013). This initiative ran until 01/10/2012.  
15

 http://tag.microsoft.com/ (access date: 08/06/2013) 
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http://tag.microsoft.com/
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2/ Computer vision, where image-recognition is used to identify objects and retrieve their associated 

data.  

An early example of the computer vision method is the DigitalDesk project at Xerox EuroPARC [48], 

which used cameras and image recognition to identify objects on ordinary desks and make the 

associated electronic documents available. However, this method requires powerful computing 

resources and has results of varying quality [44]. More recently, machine learning techniques have 

proven promising in realizing computer vision, in particular for augmented reality [49].  

3/ Positioning, where an entity’s absolute position (e.g., in a certain radius around the user) is 

exploited to retrieve its associated data. When outdoors, GPS can be used to determine absolute 

location; when indoors, technologies such as WiFi RSSI [50] and ultrasound techniques [51] can be 

employed to approximate absolute positions. 

An important advantage of this linking mechanism is that it does not require outfitting the physical 

environment with tags (tagging method), which is a process called physical registration in [14]. Also, 

it avoids the computational complexity of image-recognition (computer vision method). For this 

linking method, a service (e.g., database) is typically required to connect the absolute coordinates of 

static entities in the covered area to associated information and services (e.g., as in [25]). For 

instance, the DBPedia Mobile app16 utilizes the freely accessible online semantic DBPedia17 dataset 

(which is a Semantic Web version of Wikipedia), in order to find information on places and things in 

the user’s vicinity. As a drawback, it can be noted that the positioning method does not directly 

support physical entities with dynamic locations (e.g., people, moving art exhibits). Also, it requires a 

server infrastructure to handle service requests, preferably with multiple redundant servers to avoid 

bottlenecks and single points-of-failure. 

2.2 State of the art 
In this section, we discuss relevant state of the art. Firstly, we mention aspects that are related to 

this PhD dissertation, but where no contributions were made. This includes the usage of (Semantic) 

Web technology in mobile computing (section 2.2.1 and 2.2.2).  

Afterwards, we elaborate on aspects where this dissertation made significant contributions. 

Regarding the SCOUT framework, we elaborate on approaches integrating the physical and the 

virtual world (section 2.2.3), as well as approaches exhibiting various related context-acquisitioning 

features (sections 0 to 0). Concerning the mobile query service, we discuss related data indexing 

(section 2.2.8) and client-side caching (section 2.2.9) approaches. For an overview of our core 

contributions with regards to this state of the art, we refer to section 2.3. 

                                                           
16

 http://wiki.dbpedia.org/DBpediaMobile (access date: 08/06/2013) 
17

 http://dbpedia.org (access date: 08/06/2013) 
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2.2.1 Use of Web technology in mobile computing systems  

SCOUT relies on proven web technology for the online hosting and retrieval of context-relevant data. 

In this section, we discuss how web technology is used in mobile computing as communication 

medium or information platform.  

Open web standards and protocols (such as HTTP, XML and SOAP) are supported on virtually any 

software platform, meaning any mobile device can support these technologies without requiring the 

installation of middleware [14, 52], such as e.g., CoBrA [11]. Furthermore, global URL addressing 

scheme that allows transparently addressing web resources (i.e., independent of the hosting servers’ 

physical locations) [14] is an important web-based technique for our context.  

To our knowledge, the CoolTown project [14, 44–47] is the first attempt at leveraging web 

technology to create context-aware applications, whereby the aforementioned advantages are 

exploited. The CoolTown project focuses on creating and managing web presences for physical 

entities, providing information and services (e.g., personal profile) related to the physical entity (e.g., 

user). These web presences are available via an interactive web interface and a remote API that can 

be accessed via web protocols. By relying on web technology, web presences can be hosted on any 

web server and accessed via ubiquitous web communication protocols. Moreover, in case the web 

presences are hosted locally (i.e., in the place itself), a local WLAN connection is sufficient to obtain 

web presences. The HyCon approach [53] discusses context-aware searching (also called Geo-Based 

Searching), whereby contextual information is used as an additional search constraint. Using reverse 

geocoding, the user’s GPS position is converted to a postal address and passed on to a web search 

engine. As such, it exploits the wealth of existing web content that is related to specific locations. 

Other context-aware approaches also leverage web technology; for instance, the Context Toolkit [36, 

43] relies on HTTP for communication between components, and the contextual information service 

described in [10] uses HTTP to send queries to context sources. 

Similar to the CoolTown project [14, 44–47] and the HyCon approach [53], SCOUT leverages online 

data related to places, objects or things in the user’s vicinity. Examples of such data sources are 

online RDF files, and semantically annotated websites from which RDF data can be extracted. By 

relying on web technology for hosting and retrieval, the aforementioned advantages are gained; 

namely, minimal middleware requirements, global addressing scheme, and ubiquitous availability.  

2.2.2 Use of Semantic Web technology in context-aware computing 

In order to facilitate data integration, as well as allow expressive and rich query access, SCOUT 

utilizes Semantic Web technology. In this section, we discuss other approaches in the domain of 

context-aware computing also leveraging Semantic Web technology. 

The value of Semantic Web technology for context-aware applications has been well recognized [11, 

12, 15, 16, 54–57]. By using Semantic Web technology to represent contextual information, explicit 

semantics can be assigned to the data, using well-known standards and a wide range of existing, 
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domain-specific ontologies. This enables better knowledge sharing and reasoning in ubiquitous 

environments [11, 12]. By exploiting the built-in reasoning mechanisms, additional context may be 

inferred, while ontology alignment mechanisms can be applied to deal with issues such as 

overlapping ontologies [12, 16]. Importantly, Semantic Web technology allows resolving issues 

inherent to newly discovered, heterogeneous mobile environments. This includes integrating a priori 

unknown heterogeneous data sources [12, 15, 16], resolving uncertainty in sensor readings [54], and 

improving matching between the currently available context and application needs [12, 16]. 

Furthermore, since Semantic Web technology supports the Open World Assumption, any data source 

can specify additional information on context entities. For these reasons, other mobile computing 

domains also rely on Semantic Web technology, such as augmented reality [17, 18] and social 

networking [19]. These mobile systems locally access and manipulate RDF data via mobile RDF stores 

such as Androjena18, RDF On The Go [28], and i-MoCo [58], and systems such as MobiSem [12]. 

The Context-ADDICT approach [15] provides a unified query view over context sources, and relies on 

ontologies to better enable the integration of previously unknown data sources and reason over the 

data. The MobiSem Context Framework [12] provides support for the increasing amount of mobile 

applications accessing online Semantic Web information, by supplying programmatic access to locally 

replicated RDF data. By relying on Semantic Web technology, the integration of data from multiple, 

heterogeneous data sources is facilitated, while also enabling the enrichment of context with 

additional semantics (e.g., timestamps). The distributed context management framework presented 

in [16] allows mobile applications to pose SPARQL queries to dynamically discovered context 

providers. Firstly, by utilizing well-known, domain-specific ontologies, mobile applications can pose 

context data requests without requiring a priori knowledge on the specific environment, context 

sources or providers (as opposed to relying on certain APIs). Secondly, by relying on techniques such 

as subsumption, indirect matches can be made between application needs and the available context, 

based on ontological knowledge. For instance, in case turned-on devices in the user’s vicinity, such as 

radios and TVs, are annotated with a subtype of DistractionDevice, an application may infer that the 

user is busy regardless of the specific device. To cope with overlapping ontologies and ontology 

heterogeneity, an ontology alignment service may be employed [12, 16]. 

CoBrA-ONT [11] presents a set of OWL ontologies for the Context Broker Architecture (CoBrA) 

middleware architecture, to better enable knowledge sharing, context reasoning and privacy 

protection in ubiquitous environments, as opposed to sets of Java objects representing context (e.g., 

as in the Hydrogen system [59]). The SOCAM system [57] presents an OWL context ontology, which 

enables reasoning over context data and deriving high-level context, as well as resolving context 

conflicts. The ONCOR ontology framework [54] aims to detect and resolve uncertainty, noise and 

conflicting sensor information. Sensor output is represented via an ontology class corresponding to 

the sensor’s location and detection granularity (e.g., for a low-range Bluetooth beacon, Left-Wing-

Level-1). Via the part-of relations in the ontology, the system can detect whether some information is 
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in conflict (e.g., presence in two different 2nd floor rooms), and subsequently resolve the conflict 

(e.g., infer presence on the 2nd floor).  

In addition to utilizing Semantic Web technology for representing context information, SCOUT 

leverages the Semantic Web as an online information platform for static context data. During our 

discussion on state of the art, we discuss other approaches also utilizing the Semantic Web for this 

purpose (section 2.2.5). 

2.2.3 Integrating the physical and the virtual world 

While discussing relevant background, we indicated a number of mechanisms to link the physical and 

the virtual world (section 2.1.2). SCOUT utilizes such links to collect context information (digital) on 

the user’s surroundings (physical). Below, we give an overview of other approaches using these 

mechanisms to effectively integrate both worlds.  

A location-aware platform is presented in [50] that combines multiple linking mechanisms. More 

specifically, the platform relies on so-called location sources to obtain place identifiers; these can be 

explicit sources, utilizing the positioning method, or implicit, relying on tagging or computer vision. 

Location sources are statically prioritized based on their accuracy, allowing less accurate sensing 

technologies (e.g., WiFi RSSI) to be employed in case more accurate ones (RFID / IR tags) are not 

available.  

The CoolTown [14, 44–47] research project aims to create a tighter link between real-world physical 

entities and their web representations. Linking is achieved via URLs, which point to online web 

resources associated with physical entities. These URLs are automatically sensed, either directly or 

indirectly, from the user’s physical surroundings [14]. With direct sensing, a beacon (e.g., infrared, 

Bluetooth) or tag (e.g., RFID/NFC) put in the vicinity of the physical entity directly provides the URL of 

the entity’s associated web resource. In the case of indirect sensing, a beacon or tag presents an 

identifier (e.g., ISBN, UPC barcode) that can be converted, via a resolver service, into the 

corresponding web resource URL. This allows using different resolvers in different places with 

location-specific resolution results (e.g., resolving an ISBN number in a library / book shop leads to 

the official book webpage / book purchasing page). A process called physical registration is described 

in [14], where a place responsible (e.g., librarian) manually links physical entities to their web 

resources. This process includes printing URL barcodes and placing beacons / tags nearby physical 

entities, and potentially registering identifiers (e.g., ISBN) with the place-specific resolver. 

Consequently, this research project relies on the tagging method. 

An open lookup infrastructure for tagged products is presented in [60]. The infrastructure comprises 

a set of resource repositories, where a resource represents a piece of data on a tagged product 

(ranging from expiration dates to URLs). Useful resources can be found in both manufacturer- and 

third party-repositories, and the infrastructure likewise relies on resolver services (see CoolTown 

project) to convert detected tag IDs into particular repository addresses. In analogy to CoolTown, the 

proXimity system [61] aims to give the Web a physical presence in the world, whereby physical 
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artifacts are augmented by online hypertext and semantic information. The coupling of the Web and 

physical world is achieved by electronically marking physical artifacts using embedded, non-

networked devices containing online locations. Therefore, both the open lookup infrastructure and 

proXimity system rely on the tagging method. The HyperContext (HyCon) approach [53] discusses 

context-aware searching, called Geo-Based Search, whereby contextual information (i.e., location) is 

used as an additional constraint for searching digital information. This Geo-Based Search is applied 

on the Web, by using reverse geocoding to convert the user’s GPS position to a postal address and 

feeding it to a web search engine. As such, HyCon relies on the positioning method, and utilizes 

existing online search engines to find location-specific information. 

Physical Hypermedia applications [26, 27] are hypermedia systems where nodes represent either 

digital data or real-world physical objects, while the links between them may also be digital or 

physical. Consequently, these systems are excellent examples of integrating the physical and the 

virtual worlds, and obscure the boundaries between both. The work in [26] and [27] represent 

extensions to the Object Oriented Hypermedia Design Method (OOHDM), a web application design 

methodology, in order to support physical hypermedia. Digital information about real-world objects 

is accessed by encoding the location of the object in the request (i.e., as a URL parameter), whereby 

the given location is either a concrete identifier (e.g., sensed via IR) or a set of absolute coordinates. 

Different location models are supported; e.g., symbolic models map concrete identifiers to objects, 

while geometric models map absolute coordinates. As such, both tagging and positioning methods 

are supported. 

2.2.4 Context-acquisition software frameworks 

Our approach realizes bottom-up context acquisitioning, where low-level sensor data (e.g., read via 

GPS, RFID and QR) enables the retrieval of descriptive online semantic information, as well as the 

creation of high-level spatial relations. To provide access to the collected context information, a 

push- and pull-based, integrated query interface is provided. Below, we elaborate on other software 

frameworks that realize this bottom-up process of context sensing, interpretation and provisioning. 

The Context Toolkit [36, 43] is one of the first attempts at creating a re-usable library for context-

aware applications. To separate context sensing/interpretation from regular application logic, the 

Context Toolkit provides a library of re-usable and composable widgets (cfr. GUI toolkits). A widget 

provides one of the primary context types discussed in [7] (i.e., identity, location, time, activity) and 

provides push- and pull-based access to the context. A widget relies on generator components, which 

sense raw context data; and interpreter components, which abstract this raw data into high-level 

information. A server is a special kind of composed widget that provides all primary context types for 

a certain physical entity [7, 36]. Widgets may be distributed across the network, and publish their 

capabilities to a centralized discoverer component. Mobile applications contact this discoverer to 

locate useful widgets. Comparably, [16] presents a distributed context management approach that 

relies on context providers to publish high-level context information. Mobile applications can address 
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service directories to find suitable providers, or send a broadcast over the network. After discovering 

useful providers, an application issues SPARQL queries to obtain the desired context data. The 

Service-Oriented Context-Aware Middleware (SOCAM) [57] also relies on context providers, which 

provide low-level context data or convert given raw context data to high-level context. Mobile 

applications utilize a Service Locating Service to locate useful context providers; found providers are 

contacted via their API in a pull- and push-based way.  

In contrast to the distributed approaches above, where most tasks are performed on an external 

infrastructure, other approaches focus on performing most (or all) context acquisition tasks on the 

mobile device. The mobile, client-side context-provisioning framework Hydrogen [59] has a layered 

architecture, enabling the separation of the different context-acquisition concerns. This architecture 

comprises an Adaptor Layer, containing adapters that retrieve sensor data while hiding hardware-

specific details; and a Management Layer, comprising a Context Server that provides pull- and push-

based context retrieval. The stated reason for deploying the framework on the device is to reduce 

the effects of network disconnections. As Hydrogen only supports adapters encapsulating local 

device sensors, the Context Manager allows peer-to-peer context sharing with other devices to 

obtain non-sensed context information.  

The CoolTown project also comprises a distributed software framework [47] that allows the 

development, deployment and management of web presences. A web presence is a representation 

of a physical entity on the Web, and offers various information and services related to the entity. 

Concretely, a web presence consists of a set of modules, whereby each module delivers 1/ an 

interactive (form-based) user interface, accessible from browsers, and 2/ module APIs for remote or 

local programmatic access. Web presences are either deployed on the physical entity itself (e.g., 

hardware device such as a printer, or on person’s mobile device) or on a server running their web 

presence software. Mobile applications can access the remote module API of web presences to 

obtain more information on the entity, or to invoke services. Available modules include the directory, 

discovery, autobiographer, observer and control modules. The directory module stores and manages 

relationships, which indicate spatial relations between the physical entity and other entities (i.e., 

nearness, containment), and also keeps the related entities’ web presence contact info (i.e., a URL). 

The discovery module encapsulates the sensing and updating of positional relations, using 

technologies such as RFID and Bluetooth. In addition, this module obtains related entities’ associated 

web presence contact info, by for instance reading URLs from RFID tags. The autobiographer module 

allows modules to add events to a log, which is monitored by the observer module. In order to be 

alerted in case a certain event is logged (e.g., person leaves the room), applications can register rules 

with the observer module. Finally, control modules allow interacting with the physical entity and 

execute its services (e.g., printing). 

2.2.5 Obtaining static context data 

SCOUT leverages the Semantic Web as an information platform, retrieving static context data in the 

form of online semantic data describing the user’s surroundings. Below, we discuss how other 
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approaches, utilizing context providers or centralized context storage, currently supply and maintain 

static context data. Also, we elaborate on other approaches that re-use online (Semantic) Web data 

as static context information. 

Distributed context-acquisition frameworks (e.g., [16, 36, 57]; see section 2.2.4) typically rely on 

distributed context providers to retrieve dynamic (e.g., sensor readings) and static (e.g., place 

descriptions) context information. In order to store static context data, context providers usually 

utilize a database [10, 24] or RDF store [16]. In other application scenarios, centralized storage is 

employed to keep context- (or location-) relevant data. For instance, web application methodologies 

supplying location-specific information are typically deployed on a centralized server, which stores all 

data (e.g., Physical Hypermedia approaches [26, 27]). To avoid bottlenecks and single-points-of-

failure [41], a server infrastructure (with redundant servers) should be available, making these kinds 

of systems expensive to deploy on a large (e.g., city-level) scale. In [25], a location-aware web 

application is presented that supplies location-specific information to users, and likewise stores the 

data on a central server. Importantly, the approach focuses on facilitating the entering and managing 

of location-specific data. Content providers can define places by drawing rectangular boxes on a 

predefined map, and associate (structured) data with newly defined place. 

The HyCon [53] system re-uses existing online, location-specific information as static context data, by 

accessing online search engines. The Context-Aware Data Design, Integration, Customization and 

Tailoring (Context-ADDICT) approach [15, 62–64] supports the re-use of existing online data, via local 

wrapper components encapsulating remote data sources. The MobiSem Context Framework [12] 

locally replicates RDF data from existing online Semantic Web datasets, thus re-using existing online 

semantic data as static context data. In the case study of the MobiSem system, the Sindice19 

Semantic Web search engine is utilized to retrieve FOAF profiles related to people in the user’s 

calendar, and DBPedia to obtain data related to the user’s current location. The Context-ADDICT and 

MobiSem systems are discussed in more detail in the next section (section 2.2.6). DBPedia Mobile20 is 

a location-aware mobile app, which automatically populates a map view with semantic information 

from the online DBPedia21 dataset. Starting from the map, users can explore linked information, 

navigating through the DBPedia dataset as well as interlinked datasets such as GeoNames22. mSpace 

Mobile [65] is a mobile application relying on multiple online semantic sources, providing the user 

with a faceted interface to access location-specific information as well as explore linked information. 

Behind the scenes, both apps issue SPARQL queries to the query endpoints of the respective online 

datasets to obtain the required data. 

                                                           
19

 http://sindice.com/ (access date: 09/06/2013) 
20

 http://wiki.dbpedia.org/DBpediaMobile (access date: 09/06/2013) 
21

 http://dbpedia.org/ (access date: 09/06/2013) 
22

 http://www.geonames.org/ (access date: 09/06/2013) 

http://sindice.com/
http://wiki.dbpedia.org/DBpediaMobile
http://dbpedia.org/
http://www.geonames.org/
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2.2.6 Contextual information services 

Following the definition from [10], we consider a contextual information service to supply a unified 

interface over distributed context sources. SCOUT suits this definition, as it supplies integrated query 

access over online semantic sources describing the user’s surroundings. Below, we elaborate on the 

state of the art regarding contextual information services.  

The approaches presented in [10, 24] are deployed on a server infrastructure. The systems accept 

queries posed by mobile applications, distribute them across registered context providers/sources, 

and integrate the results. Both approaches require context sources to register with the system, and 

provide varying support for heterogeneous context sources. In particular, the approach presented in 

[10] requires a global conceptual schema to be created at design time, which covers the data 

provided by registered context sources. In contrast, the middleware presented in [24] dynamically 

matches the schemas of new context sources to a set of global schema’s, thus providing better 

support for heterogeneous sources. The constraints put on the context sources also vary. Context 

sources in [10] need to implement (a subset of) their specific query interface, for instance allowing a 

query to specify meta-attributes such as the desired accuracy (e.g., location granularity) and 

timeliness (i.e., data freshness) of the returned data. In [24], the context source is responsible for 

keeping the results of the schema matching process (which matches local schemas to a set of global 

schemas), and converts incoming queries to match the local schema. 

The Context-ADDICT approach [15, 62–64] also offers an queryable, integrated view over context 

data. In contrast to the above approaches, it focuses on integrating information from dynamically 

discovered data sources (e.g., web pages, web services, sensor networks), and does not require a 

priori registration. In addition, fewer constraints are put on data sources, and responsibilities are 

instead moved to the system itself. More specifically, for each data source type, the system requires: 

1/ an automatic semantic extractor component, which extracts an ontology from the particular 

source type, and 2/ a wrapper component, used by the query resolver to obtain data from the source 

type given a query. As a result, context sources may have varying computational capabilities, or none 

at all. In order to discover new data sources, Context-ADDICT utilizes the Data Source Discovery 

Service, whereby the discovery criteria vary on the specific scenario. To reduce the amount of 

information that needs to be queried and cached, an application-specific and pro-active context-

aware filtering of sources is performed. At design time, an application designer creates a Context 

Dimension Tree (CDT), which captures the context dimensions relevant for the specific application 

(e.g., time, location). At runtime, this CDT is instantiated with the user’s current context (e.g., current 

location, time) and used to filter sources relevant to the application needs and user context. 

The MobiSem Context Framework [12] provides a Data Access API, which allows mobile applications 

to programmatically access Semantic Web data originating from various online sources. To cope with 

data connection issues, the framework pro-actively replicates Semantic Web data on the user’s 

device for local access. It is observed that 1/ only a small selection of data should be replicated, to 

deal with mobile device restrictions, while 2/ a mobile user’s information needs also continuously 
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change. To tackle these issues, the developed data replication strategy continuously selects subsets 

of remote data sources for replication, based on the user’s (current and future) context. When 

connectivity allows, the selected data is pro-actively and transparently replicated on the user’s 

device. For instance, by accessing the user’s calendar, FOAF profiles of people the user is meeting 

with can be replicated (future context), as well as data related to his current surroundings (current 

context). It can be noted that MobiSem retrieves relevant online data and queries it locally, as 

opposed to distributing posed queries across online sources (such as in [10, 15, 24]).  

2.2.7 Exploiting mobile device capabilities 

An important characteristic of SCOUT is that it does not rely on an external infrastructure to take 

care of computational tasks. Instead, it exploits modern mobile device capabilities to perform these 

tasks locally. In this section, we elaborate on other context-provisioning systems leveraging mobile 

device capabilities. 

Many approaches reference the need for lightweight and “thin” client applications as the rationale 

for developing centralized architectures (e.g., [10, 11]). In these architectures, data storage and 

computational tasks, such as context management, data integration and query resolving, occur on an 

external, centralized infrastructure. We observe that, with the ever increasing capabilities of mobile 

devices (regarding processing power, memory capabilities), the need for lightweight clients has been 

significantly reduced. Reflecting this observation, systems are increasingly exploiting device 

capabilities, to avoid heavy infrastructure requirements [40, 61],  efficiently deal with dynamic 

context [13] and reduce consequences of connection losses [9, 59].  

The context-aware tourist GUIDE system [9] aims to provide up-to-date and context-aware 

hypermedia information, and is an early example of exploiting mobile device capabilities. The GUIDE 

setup comprises a central server that keeps touristic information, local base stations providing 

wireless coverage, and a client-side application. To cope with potential connection loss, the mobile 

client caches the touristic information, and continuously adapts downloaded webpages by inserting 

cached touristic data corresponding to the user’s current context. [13] presents a context-aware 

multimedia content filtering approach, which filters multimedia content by matching its metadata to 

the user’s context. The filtering process is performed in a distributed way, whereby the client side 

filters based on dynamic context (e.g., location), and the server side filters based on static context 

(e.g., user preferences). By performing dynamic context filtering at the client side, privacy issues are 

avoided (e.g., sending user’s location across the network) and bandwidth usage is significantly 

reduced (e.g., by avoiding frequent location updates to be sent). 

The MobiSem Context Framework [12] aims to support mobile applications accessing online 

Semantic Web data. To cope with data connection issues in mobile scenarios, the framework pro-

actively replicates Semantic Web data on the user’s device, and provides mobile applications with 

programmatic access via their Data Access API. Comparably, to cope with data source transiency (i.e., 

sources becoming unavailable, for instance because of connectivity issues), the Context-ADDICT 
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approach [15] caches context data. While the MobiSem framework runs entirely on the mobile 

device, Context-ADDICT targets both server-side and local (mobile device) deployment. In order to 

cope with device limitations and reduce the amount of data to be stored and processed, the 

MobiSem data replication strategy only replicates small selections of data, based on their relevance 

to the user’s context.  

The Hydrogen approach [59], a mobile context-aware framework, focuses on supporting typical 

mobile scenarios, whereby for instance device limitations and network disconnections may pose 

problems. To increase robustness with regards to network issues, the architecture includes a local 

context server deployed on the mobile device, which provisions local context (collected via local 

sensors and services) to mobile applications in a push- and pull-based way. In order to cope with 

device limitations, Hydrogen does not store vast amounts of context history.  

2.2.8 Data indexing 

In order to transparently query a large set of small, online RDF sources on mobile devices, the mobile 

query service performs source indexing and caching (see Chapter 4). In this section, we elaborate on 

the state of the art regarding data indexing. In the following section, we discuss related work 

concerning client-side data caching (section 2.2.9). As mentioned, we refer to section 2.3 for an 

overview of our core contributions with regards to this state of the art. 

Data indexing is utilized in a number of related domains to locate useful data sources and optimize 

data access; including context-aware systems, query distribution approaches, and RDF stores. Below, 

we elaborate on indexing applied in these fields.  

2.2.8.1 Context-aware systems 

Distributed context-acquisition systems (see section 2.2.4) typically index the capabilities of context 

providers, allowing components to easily locate useful providers. In the Context Toolkit [36, 43], 

widgets sense, interpret and aggregate context, and publish their capabilities to a centralized 

discoverer component; for instance, capabilities include supported context types and interpretation 

mechanisms [43] (the concrete format is not elaborated). Mobile applications contact the discoverer 

component to locate useful widgets. In the SOCAM system [57], context providers sense or interpret 

context, and publish their capabilities in the form of OWL expressions to a Service Locating Service. 

Mobile applications send a query to the Service Locating Service, indicating the desired kind of 

context. In response, the service applies semantic matching to match the query to the published 

capabilities. In [16], context providers publish their capabilities as a set of sensed OWL classes and 

properties. Mobile applications either contact a directory that stores these capabilities, or directly 

obtain them in response to a broadcast on the local network. By leveraging an ontology alignment 

service (e.g., [66]), mobile applications can deal with ontology heterogeneity.  

In order to automatically distribute queries across query-relevant context sources, contextual 

information services (see section 2.2.6) should also support indexing the capabilities of context 
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sources. However, [24] requires clients to manually specify query-relevant context providers, while 

[10] does not go into detail on the indexing and query distribution step. In the MobiSem system [12], 

RDF data is pro-actively replicated from pre-configured online datasets to the user’s device. No 

indexing is performed to reduce the query dataset; while performance problems are already 

reported when processing datasets with more than several hundred triples, which is far from 

acceptable performance. In Context-ADDICT [15, 62–64], the indexing step includes extracting a Data 

Source Ontology from each data source, which is subsequently integrated into the Domain Ontology. 

Mobile applications specify queries using the Domain Ontology, allowing the system to dynamically 

and transparently identify query-relevant sources. 

2.2.8.2 RDF Query distribution 

RDF query distribution approaches typically rely on indices to identify sources that contain data 

relevant to posed queries. During query distribution, the posed query is divided into subqueries, 

distributed across the identified data sources, and the integrated results returned. For instance, 

these indices may also store additional information to optimize the query distribution plan, as we 

explain below.  

The Distributed ARQ (DARQ) [67] and Semantic Web Integrator and Query Engine (SemWIQ) [68] 

systems keep an index with summary info on each dataset. DARQ keeps so-called service 

descriptions, including found predicates, constraints on subjects and objects that occur together with 

these predicates, and statistical information (e.g., selectivity estimations for triple patterns with 

certain predicates). The SemWIQ system maintains a catalog per data source, which keeps a list of 

classes and their number of instances, as well as a list of properties and their number of occurrences. 

In both cases, the index is kept in RDF format. Given a posed query, these indices are used to 

determine which semantic query parts (i.e., triple patterns) should be sent to which datasets. This 

leads to a query execution plan, which is later optimized using existing database techniques. After 

construction, the optimized query execution plan is executed, the results are joined and finally 

returned. The Adaptive Distributed Endpoint RDF Integration System (ADERIS) system [69] keeps only 

very limited summary info, namely contained predicates, and directly sends subqueries to relevant 

datasets. Instead of relying on pre-calculated statistics (as in DARQ) to optimize query execution 

plans, it focuses on dynamically re-ordering result joins based on runtime selectivity statistics 

(obtained from analyzing subquery results). The approach in [70] focuses on indexing occurring path 

structures (i.e., predicate sequences) into source-index hierarchies. These source-index hierarchies 

enable the identification of query endpoints that can handle combinations of query triple patterns or 

“paths”, in order to reduce the number of local joins on the individual results.  

Since Semantic Web query endpoints are typically autonomous, obtaining accurate and up-to-date 

statistics can be problematic, due to limited access rights and unexpected content changes. To an 

extent, the DARQ and SemWIQ approaches take this issue into account by collecting relatively simple 

summary information. The ADERIS system almost entirely avoids this issue, by mainly utilizing 
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runtime selectivity statistics. By relying on found path structures [70], the impact of content changes 

is reduced, as it can be assumed that these (schema-based) structures will change less often than 

instance data. 

2.2.8.3 RDF stores 

Many RDF stores focus on keeping extensive indices to speed up access to RDF data, trading index 

space and update efficiency for retrieval time. Androjena23 is a port of the well-known Jena RDF 

store24 to the Android platform. To speed up query access, this store uses three hash tables, 

respectively indexing the subjects, predicates and objects of kept RDF triples. Given a query triple 

pattern with concrete values (e.g., subject URI), Androjena uses one of these indices to identify 

stored triples containing the given value. In case multiple concrete values are given (e.g., subject and 

predicate URIs), Androjena leverages a predefined ordering of indices to identify the most selective 

index (e.g., it appeared the predicate index was less selective in practice). Our caching mechanism 

relies on a similar indexing structure for quick cached data retrieval (see Chapter 4), section 4.7.2.6). 

More specifically, the cache keeps indices for subject types, predicates and object types. Since these 

indices keep schema-level information instead of instance data (i.e., resources), they contain 

significantly less entries. 

To fully optimize query access, the Yet Another RDF Store (YARS) approach [71] keeps 6 quad indices 

to cover all potential quad access patterns. A quad represents an RDF triple accompanied by a 

context component (e.g., indicating provenance). As an example access pattern, s:p:?:? represents 

the case where a concrete subject and predicate are specified, and variables are given for the object 

and context component. Concretely, a quad index is implemented as a B+-tree, and each stored quad 

is kept as a key in the tree. By leveraging the range query support of B+-trees, they only require 6 

quad indices to cover all access patterns. The HexaStore [72] similarly relies on a sextuple indexing 

scheme to cover each potential triple access pattern. Each index represents an ordering of subject, 

predicate and object, leading to six indices (= 3!). For instance, a predicate-subject-object index 

connects each predicate resource to a vector of subject resources, whereby each subject is linked to 

a list of object resources. A path through such an index represents a stored triple. Therefore, it can 

be observed that the indexes from HexaStore and YARS actually store the triples as well. Since both 

approaches require multiple indices, triples are thus stored multiple times, requiring a multitude of 

the storage space that would normally be needed. In the HexaStore system, it was calculated that 

the worst-case increase in storage space is five-fold (due to the internal re-use of vectors and lists). It 

is also noted in [72] that these kinds of indices have high update and insertion costs, since all indices 

need to be updated. Finally, both approaches perform dictionary encoding, whereby string values 

(e.g., URIs, literals) are mapped to integer ids. Dictionary encoding enables less data to be stored25 

and optimizes query processing, since integer comparisons are cheaper. RDF On The Go [28] utilizes 
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 http://code.google.com/p/androjena/  (access date: 08/06/2013) 
24

 http://jena.apache.org/ (access date: 08/06/2013) 
25

 At least, in case resources occur in multiple stored triples, which is typically the case. 

http://code.google.com/p/androjena/
http://jena.apache.org/
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YARS to handle RDF data on the mobile Android platform, while i-MobileConference (i-MoCo) [58] 

relies on the HexaStore for RDF data handling on the mobile iOS platform. RDF On the Go was ported 

from the Jena store to the Android platform (cfr. Androjena), and has a special focus on supporting 

spatial data via R-trees.  

2.2.9 Client-side data caching 

As mentioned, the mobile query service performs source indexing and caching (see Chapter 4) to 

transparently query a large set of small, online RDF sources on mobile devices. In this section, we 

elaborate on state of the art regarding client-side caching.  

Client-side data caching fully exploits the storage capacity and processing power of client devices, 

increasing performance and scalability of distributed systems [73, 74]. Below, we elaborate on 

existing types of client-side caching systems (section 2.2.9.1), and discuss cache replacement policies 

for mobile scenarios (section 2.2.9.2). 

2.2.9.1 Data caching approaches 

Most existing caching approaches are based on client-server architectures, where all necessary data 

can be obtained from the server. Specifically, in traditional data-shipping techniques, clients perform 

queries locally on data retrieved on-demand from the server. Afterwards, clients cache the obtained 

data for later re-use [73]. In case a query requests data that was not cached locally, called a cache 

miss, the missing tuples (or pages) are obtained by sending their identifiers to the server. These kinds 

of caching mechanisms cannot be directly applied in our setting, where specific data cannot be 

obtained on-demand from a single server. Instead, the required data is spread across online files, 

whereby a file needs to be fully downloaded before its contained data can be accessed. 

Query caching (or semantic caching) caches query results instead of retrieved data. The cached query 

results are re-used to resolve future queries by using query folding techniques [75]. In case the 

cached query results are insufficient to answer a new query (i.e., cache miss), the system generates a 

remainder query to obtain the missing data from the server in a fine-grained way. Other context-

aware systems also utilize caching. For instance, the Context-ADDICT approach [15, 62–64] proposes 

to use caching to deal with the transiency of data sources (i.e., sources becoming unavailable, for 

instance because of connectivity issues). However, concrete caching mechanisms are not elaborated. 

MobiSem [12] pro-actively replicates online RDF data locally on the device, to deal with data 

connection issues. To optimize this process, only data relevant to the user’s context is replicated. 

2.2.9.2 Cache replacement policies 

A cache replacement policy determines what data should be discarded in case the storage medium is 

full. For instance, data can hereby be selected that has a low likelihood of being required in the 

future. To estimate this likelihood, a replacement policy typically assumes a certain locality of 

reference, indicating what kind of data items will be frequently referenced. For instance, temporal 

locality indicates that items that have been recently referenced will likely be referenced again. In 
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order to indicate the likelihood of data items being referenced in the future, a replacement policy 

associates a removal value with each data item.  

A lot of work has already been put in developing cache replacement policies for mobile settings. 

These policies typically rely on semantic locality, which is based on general properties and relations 

of data items. For instance, in [73], semantic locality indicates that query results, associated with 

physical locations closest to the user, will be frequently referenced. Similarly, the Furthest-Away-

Replacement (FAR) policy [76] assumes that cached data, which is located in the user’s movement 

direction and currently nearby, will be frequently referenced. 

2.3 Contributions to the state of the art 
In this section, we first position SCOUT with regards to existing definitions of context and context-

aware features (section 2.3.1). Then, we indicate the contributions of our approach (sections 2.3.2 to 

2.3.8) compared to current state of the art (see section 2.2).  

At the end of the section (section 2.3.9), we present an overview that clearly indicates the extent to 

which other approaches exhibit (some form of) our contributed features.  

2.3.1 Context and context-awareness 

Our approach focuses on collecting descriptive online information on the user’s environment, 

including nearby places, people and things (called physical entities) and keeps general user info as 

well, such as user preferences and device details. With regards to the above classifications, SCOUT 

thus collects identity [7], or user description / preferences and terminal characteristics [34]; and 

location context types [7, 34], including data on nearby physical entities and high-level spatial 

information. A mobile user’s information needs are often related to his surroundings [12, 77]; for 

instance, finding nearby hotels matching the user’s preferences [78] or getting tourist information 

related to nearby points-of-interest [9]. Consequently, nearby physical entities (e.g., hotels, points-

of-interest) are often relevant to interactions between the user and mobile applications, in particular 

during information lookups. Given the context definition mentioned above, descriptions of these 

entities may thus be characterized as context. To collect this kind of context data, our approach is 

grounded in the discovery of links between physical entities and online data (see section 2.1.2). 

Finally, SCOUT makes no assumptions on context-aware applications and their features, and instead 

focuses on supplying generic query access to the collected context. In order to support mobile 

applications that need to be reactive to the user’s context in some way (e.g., adaptive software), 

push-based query access is provided as well. 

2.3.2 Integrating the physical and the virtual world 

Similar to [50], SCOUT leverages multiple linking mechanisms in parallel to locate online data sources 

describing physical entities in the user’s vicinity. However, in contrast to the approach in [50], SCOUT 
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utilizes multiple linking mechanisms to cope with newly discovered, a priori unknown environments. 

Firstly, the positioning method is supported, identifying online data sources associated with entities 

in a certain radius around the user. For this purpose, online semantic datasets (e.g., 

LinkedGeoData26) are contacted with the user’s absolute position (e.g., obtained via GPS), which is 

resolved to online data source locations. This resembles indirect sensing from the CoolTown project 

[14, 44–47], whereby the online semantic dataset serves as resolver service. During indirect sensing, 

SCOUT thus leverages existing online services, which is comparable to HyCon [53]. Secondly, SCOUT 

supports the tagging method, whereby tags (e.g., RFID tags), put nearby physical entities, are read to 

obtain the entities’ associated online source locations. In CoolTown, this is called direct sensing. 

2.3.3 Context-acquisition software frameworks 

It can be noted that the distributed approaches mentioned in [16, 36, 57] enable mobile applications 

to obtain a wide range of context information in well-outfitted smart spaces. At the same time, they 

relieve mobile devices of resource-intensive tasks such as context interpretation. On the other hand, 

they require context providers/widgets with computational capabilities, even in case of static context 

data, and thus need an external infrastructure hosting their software. In the CoolTown approach 

[47], web presences, providing information and services related to an entity, are hosted on the 

physical entity itself (e.g., hardware device such as a printer) or on a proprietary server. Therefore, 

their software needs to be installed on all these devices or on online servers. In contrast, SCOUT 

supports minimally outfitted environments without infrastructure, whereby all related 

computational tasks, such as context interpretation and integration, are performed on the device. As 

static context data, SCOUT re-uses online semantic data associated with the user’s surroundings, 

which can be hosted on any web server.  

The discussed distributed systems require mobile applications themselves to locate useful context 

providers or widgets. Similarly, the CoolTown web presence architecture requires mobile 

applications to manually navigate spatial relations, in order to obtain more information on nearby 

physical entities. In contrast, SCOUT offers an integrated, push- and pull-based queryable view over 

the integrated context information. Moreover, as in [16], SCOUT allows mobile applications to pose 

SPARQL queries referencing well-known domain-specific ontologies, making them independent of 

the specific provider / widget APIs (in contrast to e.g., [36, 57]). In the same vein, a serious drawback 

of the Hydrogen approach [59] is that the context is represented using discrete Java objects, ruling 

out expressive, unified query access and reasoning. 

Finally, inspired by the CoolTown approach, SCOUT also creates high-level spatial relations (indicating 

nearness, containment) between the user and detected physical entities. As an extra step, SCOUT 

utilizes a generic, flexible mechanism to determine spatial relations, whereby a range of (inaccurate) 

location and detection data (e.g., detection range or maximum detection distance) can be employed. 
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2.3.4 Obtaining static context data 

The approaches relying on centralized data storage [25–27] share a problem common with other 

centralized architectures, namely that they necessitate an external infrastructure with its associated 

costs and other drawbacks. Distributed context providers [16, 36, 57] require computational 

capabilities, and thus also need to be deployed on an external infrastructure. Moreover, in order to 

ensure accurate and up-to-date information, all of the systems in this paragraph require static 

context data to be entered and maintained by content providers, for instance place owners or 

touristic services [25]. Even when data input is facilitated [25], it may be observed that much 

information on places and things is already available on the web, typically in the form of websites. 

Increasingly, websites are being semantically annotated (e.g., using RDFa) and are thus becoming 

fully-fledged (machine-readable) semantic sources. Other online semantic data sources include RDF 

files and online datasets (e.g., DBPedia, LinkedGeoData), which may also contain information on 

places and things. As a result, content providers will often need to maintain two information sources; 

their own online web presence (e.g., website, RDF data) and the context provider or centralized 

information system. Making matters worse, data stored by these systems can typically only be 

accessed by proprietary software, resulting in closed data silos. This increases the participation 

threshold for content providers, as compared to putting online data on freely accessible web servers.  

In mobile scenarios, the concept of huge, freely accessible online semantic datasets (such as DBPedia 

and LinkedGeoData27) is very attractive, since they allow mobile apps to easily and efficiently obtain a 

wide range of context-specific information. Existing mobile systems such as DBPedia Mobile28 and 

mSpace Mobile [65] access the query endpoints of such large online semantic datasets to realize 

their functionality (e.g., location-aware map view). SCOUT also utilizes such online semantic datasets 

to automatically discover online data sources describing the user’s physical surroundings (in addition 

to other methods, such as tagging). However, in practice, many of the associated online query 

endpoints only offer access to a subset of their data (due to server hardware limitations), while they 

are also not (yet) supported by an infrastructure that allows scaling to a large number of clients. As 

such, they are currently not suited for widespread use by mobile clients. In SCOUT, we instead rely 

on relatively small online semantic sources, which can be individually and cheaply hosted on any web 

server. 

2.3.5 Contextual information systems 

A cited advantage of the approaches discussed in [10, 24] is that they only require a lightweight 

mobile client, since the server infrastructure takes care of data integration and query resolution. 

However, they require an external infrastructure, whereas significant increases in mobile device 

capabilities have empowered SCOUT to handle the necessary computational tasks locally on the 

mobile device. It can also be noted that these approaches rely on context sources with (varying) 
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computational capabilities (e.g., to resolve subqueries), which need to be registered with the system. 

Although these sources are able to supply the information system with highly dynamic and up-to-

date data (e.g., sensor readings), they present unnecessary overhead in case of static data.  

Comparable to SCOUT, the Context-ADDICT [15, 62–64] and MobiSem [12] contextual information 

systems are deployed on the mobile device. Both systems perform pro-active data filtering, based on 

the relevance of the data to the user’s context. In case of Context-ADDICT, this context-relevance is 

determined per application, via a CDT designed by the application designer. Therefore, a large 

workload is incurred at design time [62–64]. Moreover, this design-time specification requires 

knowledge on all possible data schema’s beforehand. For MobiSem, context-relevance is determined 

based on various pre-configured factors, meaning mobile applications may only query data deemed 

context-relevant by MobiSem. As a result, a major drawback of the MobiSem approach is that certain 

query-relevant information may not be present in the final query dataset29. In contrast, SCOUT 

dynamically analyzes posed queries and automatically selects query-relevant data, and does not 

require a design time effort or a priori knowledge of used ontologies. In addition, it ensures that all 

potential query-relevant data is present in the final query dataset. On the other hand, this re-active 

strategy means query-relevant, uncached source data may have to be retrieved at query time, 

incurring runtime costs. We discuss mechanisms dealing with this issue in Chapter 4. We also note 

that MobiSem and Context-ADDICT only respectively supply programmatic / query-based context 

access in a pull-based way. 

Finally, as mentioned, the Context-ADDICT approach dynamically discovers new sources at runtime. 

This is similar to SCOUT, where the Detection Layer (see Chapter 3, section 3.2) performs the 

discovery task and passes on location-relevant data sources to the query service30. On the other 

hand, the MobiSem approach relies on pre-configured online data sources, while the contextual 

information services in [10, 24] require context sources to be pre-registered.  

2.3.6 Exploiting mobile device capabilities 

Some related approaches exist that focus on performing all tasks locally on the device, such as 

MobiSem [12] and Hydrogen [59]. Although it is mentioned that Context-ADDICT [15, 62–64] can be 

deployed on both the client and server side, it does not deal with the particular challenges occuring 

from deployment on mobile devices (e.g., memory/processing limitations). MobiSem deals with 

mobile device limitations by only replicating relatively small amounts of semantic data to the device, 

and thus does not deal with issues resulting from processing large amounts of semantic web data. 

Comparably, to cope with device limitations, Hydrogen does not store vast amounts of context 
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history. In contrast, SCOUT fully exploits the memory, storage and processing capabilities of modern 

mobile devices to locally process large amounts of semantic data. 

2.3.7 Data indexing 

In this section, we highlight the contributions of the mobile query service compared to the state of 

the art on data indexing in fields such as context-aware systems (section 2.3.7.1), RDF query 

distribution (section 2.3.7.2) and RDF stores (section 2.3.7.3). 

2.3.7.1 Context-aware systems 

In our mobile query service, the Source Index Model (SIM) component indexes new online data 

sources, to later enable the identification of sources containing query-relevant data. More 

specifically, the SIM keeps combinations of metadata found in the sources, consisting of 

subject/object types and predicates. When a query is posed, the SIM extracts similar metadata from 

the query and automatically matches it to source metadata. Consequently, the indexed information 

resembles that of [16], where OWL classes and properties are kept; and of SOCAM [57], where OWL 

expressions are stored. However, in [16], the context consumer itself is responsible for checking 

whether a provider’s OWL classes and properties matches its information needs. The Context Toolkit 

[43] requires context consumers to contact a centralized discoverer, and similarly check which 

context widgets serve desired context. In analogy to the Service Locating Service from SOCAM [57], 

the SIM instead automatically identifies useful context sources, given a posed query. However, the 

Service Locating Service is deployed on a server infrastructure (OSGi31) and does not run on the 

mobile device. In contrast, the SIM presents a standalone, mobile solution. 

2.3.7.2 RDF Query distribution 

Although we share a common goal, namely identifying query-relevant sources, the referenced query 

distribution approaches focus on keeping index information to optimize the query distribution 

process (for instance, statistical info and path structures to optimize local joins). Moreover, none of 

these approaches are deployed on a mobile device and deal with their hardware limitations. To 

speed up access times on mobile devices, the SIM component relies on a fast multi-level index, 

instead of representing the index data in RDF (as in DARQ [67] and SemWIQ [68]). Furthermore, the 

SIM focuses on collecting summary info that is more efficiently obtainable, namely metadata 

combinations (see Chapter 4, section 4.4). Finally, it can be noted that the SIM keeps pre-calculated 

index data, which may be problematic in case of source content changes (as mentioned above). 

However, this issue is reduced by keeping schema-level data instead of instance-level data (such as 

resource constraints and instance counts), which is less likely to change over time. Furthermore, a 

mechanism is in place to frequently update index information (see Chapter 4, section 4.5.3). Finally, 

our mobile query service also applies dictionary encoding (see Chapter 4, section 4.7.1.1). 
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2.3.7.3 RDF stores 

Although the RDF On The Go [28] and i-MoCo [58] stores prove that RDF stores can be deployed on 

mobile devices, the employed indexes still require a multitude of storage and memory space, as well 

as high insertion and update costs. The SIM index structure is similar to HexaStore, as it is a multi-

level index where each path represents a metadata combination found in a source (see Chapter 4, 

section 4.4.1). However, the SIM keeps schema-level data (i.e., types, predicates) instead of instance 

data (i.e., resources) and supports only one access pattern, making it much smaller in size and 

quicker to update. 

2.3.8 Client-side data caching 

In this section, we indicate the contributions of the mobile query service with regards to client-side 

data caching, including existing data caching approaches (section 2.3.8.1) and cache replacement 

policies (section 2.3.8.2).  

2.3.8.1 Data caching approaches 

In our setting, query caching [75] has several drawbacks. Firstly, there is no possibility to efficiently 

retrieve non-cached data items via a remainder query, since the necessary data is captured in online 

files. Secondly, in our setting, new online sources are continuously discovered, which potentially 

contain data relevant to past and future queries. To cope with this, cached query results could be 

pro-actively updated with results from the newly encountered sources. On the other hand, this 

would also mean new sources will be ignored in case they are unrelated to a cached query, 

potentially leading to an under-utilization of storage space. Furthermore, queries unrelated to 

previously cached queries would yield a much higher execution time, since all encountered, query-

relevant online sources need to be downloaded. 

Our mobile query service utilizes a cache to store online source data discovered by the client (see 

Chapter 4, section 4.5). Multiple cache components were developed; in the Meta Cache component, 

cached triples are grouped via their shared semantics, i.e., predicates and subject/object types. Note 

that this is similar to semantic caching, which instead utilizes posed queries to define the shared 

semantics of cached data. In case of MobiSem [12], mobile applications can only access a priori 

replicated information, as deemed context-relevant by MobiSem. Instead, our cache component 

stores the online data discovered by the client, and thus more closely reflects application needs. 

Moreover, it allows re-using the caching mechanism outside of context-aware scenarios. Although 

Context-ADDICT mentions the use of caching, it does not elaborate on concrete caching mechanisms. 

2.3.8.2 Cache replacement policies 

We present a replacement policy called Least-Popular-Sources (LPS), which deals with our specific 

setting where required data is captured in online files. While the employed cache component may 

organize the cached data in any arbitrary way (e.g., Meta Cache organizes via shared metadata), the 

replacement policy always removes data on a per-source level. To reduce query-time overheads, the 
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LPS policy adopts a strategy where “popular” sources, which have a large impact on the cache (i.e., 

are involved in many cache units) and contain popular metadata (i.e., metadata often found in other 

sources), are retained. The source download cost can also be considered, in order to make sources 

that are expensive to download (i.e., have long download times) less likely to be removed. As shown 

in our evaluation (see Chapter 5, section 5.4.2), the LPS policy can reduce the number of cache 

misses considerably, as well as the number of required source re-downloads per cache miss. Finally, 

by not relying on a mobility-based removal strategy (as in [73, 76]), the mobile query service can be 

re-used by other systems that do not focus on querying location-based data. 

2.3.9 Overview 

This dissertation touches many aspects, both from the domain of mobile context-awareness and RDF 

querying. In this section, we present an overview that clearly indicates our core contributions 

compared to the state of the art. Section 2.3.9.1 deals with the SCOUT context-provisioning 

framework, while section 2.3.9.2 concerns the mobile query service. 

2.3.9.1 SCOUT context-provisioning framework 

In Table 2-1, we highlight the extent to which other approaches exhibit (some form of) the 

contributed features yielded by the SCOUT framework. 
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(A) Client-side deployment (F) Integrated context access 

(B) Multiple linking mechanisms in parallel (G) Query access method 

(C) Dynamic source discovery (H) Push- and pull-based access 

(D) Re-use online data (I) Semantic Web – Data integration 

(E) Supply & maintain spatial info (J) Semantic Web – Reasoning 
 

 A B C D E F G H I J 

Hydrogen [59] X       X   

MobiSem [12] X   Xb  X   X  

Context-ADDICT 
[15, 62–64] 

X1  X Xa,b  X X    

Location-aware 
platform [50] 

 X         

HyCon [53]    Xa       

DBPedia Mobile32    Xb       

mSpace mobile 
[65] 

   Xb       

CoolTown  
[14, 44–47] 

    X      

CIS [10]      X X    

Context-aware 
middleware [24] 

     X X    

Distrib. context 
man. [16] 

      Xa  X  

SOCAM [57]        X  X 

Context Toolkit 
[36, 43] 

       X   

CoBrA-ONT  
[11] 

         X 

SCOUT X X X Xa,b X X Xa X X X 

Table 2-1. Overview of contributions for the SCOUT context-provisioning framework. 

Below, we shortly elaborate on approaches indicated by a superscript index in the table. 

(A) Client-side deployment 
1 Although both external and local deployment locations are envisioned, Context-ADDICT [15, 62–64] 

is not tailored to deal with issues occurring at any side (e.g., limitations of mobile hardware vs. 

communicating frequent location updates).   
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(D)  Re-use online data 
a The indicated approaches re-use online Web data. 
b The indicated approaches re-use online Semantic Web data. 

(G)  Query access method 
a The indicated approaches supply semantic query access. 

2.3.9.2 Mobile query service 

In Table 2-1, we highlight the extent to which other approaches exhibit (some form of) the 

contributed features yielded by the mobile query service. 

(A) Mobile, client-side system (D) Automatic indexing 
(B) Data filtering (E) Schema-based indexing 
(C) Support online files (F) Data caching 

 

 A B C D E F 

Androjena33 X   X   

RDF On The Go 
[28] 

X   X   

i-MoCo [58] X   X   

MobiSem [12]  Xa    X1 

Context-ADDICT  
[15, 62–64] 

X1 Xa X1 X1 X  

Query distribution  
[67–70] 

   X   

Path-based query  
distrib. [70] 

   X X  

SemWIQ [68]    X X  

Mobile query 
service 

X Xb X X X X 

 Table 2-2. Overview of contributions for the mobile query service. 

Below, we shortly discuss approaches indicated by a superscript index in the table. 

(A) Mobile, client-side system 
1 As mentioned before, Context-ADDICT [15, 62–64] may be deployed both locally and externally, but 

does not deal with issues occurring at any side.  
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(B)  Data filtering  
a The indicated approaches supply pro-active data filtering. 
b The indicated approaches supply re-active data filtering. 

(C)  Support online files 
1 While Context-ADDICT [15, 62–64] supports a wide range of online sources by provisioning local 

wrapper components, it does not consider the issues resulting from accessing any particular type of 

source, such as individual online files. 

(D)  Automatic indexing 
1 We note that the indexing process is not fully automatic for Context-ADDICT, as an additional 

design-time effort is required to enable filtering based on the user’s context.  

(F)  Data caching 
1 MobiSem [12] locally replicates or caches context-relevant data for local access, but does not 

organize it in a particular way to optimize retrieval times or memory requirements. Furthermore, 

MobiSem only caches very limited amounts of data. 

2.4 Summary 
This chapter gave an overview of background and state of the art, necessary to correctly position this 

dissertation. Regarding background, the chapter presented definitions of context and context-

awareness, and elaborated on mechanisms of linking the physical to the virtual world, which are 

leveraged by SCOUT to retrieve online semantic data describing the user's environment. Afterwards, 

the chapter reviewed state of the art. In this review, we first discussed how Web and Semantic Web 

technology is currently being utilized in mobile computing. Then, we detailed aspects of related work 

where this dissertation made significant contributions. This involved discussing other approaches 

that exploit the aforementioned linking mechanisms to close the gap between the physical and 

digital world. We detailed context-acquisitioning frameworks, realizing bottom-up context capturing 

by abstracting low-level sensor data into high-level context. Systems were discussed where static 

context data is supplied via separate context provider components or centralized information 

systems, requiring content providers (e.g., place owners) to enter the data separately into the 

system. Also, we indicated systems that, comparable to SCOUT, leverage the Semantic Web as an 

online information platform. So-called contextual information services were detailed, which provide 

a unified, integrated query access over distributed context sources. SCOUT also belongs in this 

category, since it provides transparent, integrated access to online data sources describing the user's 

surroundings. We discussed state of the art pertaining to the full utilization of mobile device 

capabilities, an important characteristic of SCOUT. 

The chapter further reviewed related work concerning the mobile query service. We indicated state 

of the art regarding data indexing and client-side caching in related fields. In these domains, data 

indexing is utilized to locate useful data sources and optimize data access. In distributed context-
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aware systems, the capabilities of context providers are often indexed to enable the easy 

identification of useful providers. RDF query distribution requires the indexing of data sources, so 

query execution can be distributed across query-relevant sources. RDF stores typically keep extensive 

indices in order to speed up access to RDF data, thus trading memory and storage space (as well as 

update times) for faster data retrieval. Client-side data caching aims to fully exploit the storage and 

processing capabilities of client devices. We presented traditional client-side caching systems as well 

as query caching (or semantic caching) approaches, and discussed the reasons why they cannot be 

directly applied to our particular mobile setting. Afterwards, the chapter mentions existing cache 

replacement policies that are fine-tuned to mobile settings.  

Finally, we compared our work to the background and state of the art. Firstly, this involved 

positioning the SCOUT framework with regards to the presented classifications of context and 

context-awareness. We argued how SCOUT suits these definitions by supplying descriptive 

information on the user's surroundings, and by providing push- and pull-based context access 

features. Afterwards, for each relevant aspect, we indicated the core contributions of the SCOUT 

framework and mobile query service compared to the state of the art. In addition, an overview was 

given to indicate the extent to which the contributed features (i.e., features contributed by this 

dissertation) were supported by other related approaches. 



 



 

Chapter 3  

 

SCOUT, a Mobile Context-
Provisioning Framework 

In the previous chapter, we discussed the state of the art related to this dissertation. The chapter 

reviewed methods for linking the physical and the digital worlds, as well as context-provisioning 

approaches, whereby we focused on related aspects such as mobile context acquisitioning, 

integrated context access, and leveraging mobile device capabilities. We further presented related 

work concerning the mobile query service, reviewing data indexing and caching techniques in related 

domains (e.g., RDF stores, query distribution).  

This chapter introduces SCOUT as a mobile, client-side context-provisioning framework. We discuss 

the layered architecture and elaborate on each layer, presenting its components, data structures and 

processes. Afterwards, we review the implementing package structure of each layer. Throughout the 

chapter, we motivate design decisions and indicate how the different layers cooperate to realize 

expressive, push- and pull-based query access to environment data. This chapter is structured as 

follows. First, we discuss the layered architecture of the SCOUT framework (section 3.1). In the 

following sections, we give an overview of each layer, being the Detection Layer (section 3.2), Spatial 

Layer (section 3.3), Environment Layer (section 3.4), and Applications Layer (section 3.5). In section 

3.6, we review the core implementation of the different layers. Finally, section 3.7 provides a 

summary of this chapter. 
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3.1 Architecture overview 
SCOUT is a mobile, client-side context-provisioning framework, which leverages the Semantic Web as 

an information platform for descriptive information on the user’s physical environment. The different 

context-acquisitioning tasks performed by SCOUT are clearly separated and encapsulated in distinct 

layers, allowing different technologies and mechanisms to be plugged in at each level. Figure 3-1 

shows the layered architecture of the SCOUT framework. Below, we shortly summarize each layer. A 

more elaborated explanation is given in the following sections. 

 

Figure 3-1. SCOUT architecture overview. 
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The bottom layer, the Detection Layer, is responsible for dynamically detecting physical entities in 

the vicinity, and locating their descriptive online semantic data sources. To perform these two tasks, 

the layer keeps so-called detection techniques. By supporting various detection techniques 

interchangeably, SCOUT can be deployed across new, heterogeneous environments outfitted with a 

range of different linking mechanisms. The detected locations of online data sources, as well as 

detection and location data (e.g., GPS coordinates, detection range) useful for inferring spatial 

information, is dynamically passed to the Spatial Layer for interpretation. 

The goal of the Spatial Layer is to abstract low-level detection data supplied by the Detection Layer 

into high-level spatial information. This spatial information denotes whether the user is currently 

nearby a physical entity (e.g., a person) or inside a place (e.g., a building), or to denote proximity or 

containment between physical entities themselves. By provisioning high-level spatial data, mobile 

applications can easily obtain knowledge on nearby entities while still abstracting from low-level 

details (e.g., absolute coordinates, detection ranges). A flexible mechanism is in place, centered on a 

spatial index, to actively keep spatial information up-to-date. The inferred spatial information is 

communicated to the Environment Layer, accompanied by the detected locations of online data.  

The Environment Layer keeps models and components enabling expressive, push- and pull-based 

query access across the environment data. The Spatial Model keeps spatial relations between 

physical entities and the user, reflecting the spatial information passed from the Spatial Layer. The 

layer further keeps a User Model, storing information useful for personalization (e.g., device 

properties, user characteristics and preferences). The Environment Model is an abstract, integrated 

view on the user’s current and previous environments, and comprises the concrete User Model, 

Spatial Model, and the detected online semantic data sources. To transparently access the detected 

semantic dataset, consisting of large amounts of small online sources, the layer utilizes the mobile 

query service. We discuss this query service in more detail in Chapter 4. Mobile applications can 

access the Environment Model in a push- and pull-based way, respectively via the Environment 

Notification Service and Environment Query Service. 

Finally, the Application Layer comprises mobile applications built on top of the SCOUT framework. 

These applications utilize the context services supplied by the Environment Layer to obtain 

expressive, push- and pull-based access to environment context. Three mobile applications currently 

rely on these services to realize their functionality: the Person Matcher [31], a mobile app that 

identifies nearby people of interest; COIN [29, 32], a client-side web augmentation approach; and 

AdaptIO [30], which adapts mobile interaction obtrusiveness. Chapter 6 details these applications. 

In the sections below, we elaborate on each of these layers. 
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3.2 Detection Layer 
The Detection Layer automatically detects physical entities in the user’s vicinity, and locates their 

associated online semantic data. To achieve this, the layer keeps detection techniques, which rely on 

linking mechanisms connecting the physical to the digital world (see Chapter 2, section 2.1.2).  

Below, we mention useful linking mechanisms, discussing their benefits and drawbacks (section 

3.2.1). Then, we elaborate on detection techniques and how they utilize these mechanisms (section 

3.2.2). An overview of the core implementation of this layer can be found in section 3.6.1.  

3.2.1 Linking mechanisms 

In the context-aware literature, two linking mechanisms are typically used to connect the physical 

world to the virtual; tagging and positioning (see Chapter 2, section 2.1.2). For tagging, an 

identification tag (or beacon) is attached directly on or nearby the physical entity and loaded with 

related (locations of) data. Example tagging technologies include Radio-Frequency Identification 

(RFID) / Near Field Communication (NFC), Quick Response (QR) codes or Bluetooth. In case of 

positioning, the physical entities’ absolute positions are exploited to retrieve their associated data. 

For instance, clients can contact an online service (e.g., LinkedGeoData34) to obtain information 

describing entities in a certain radius around the user.  

Tagging requires outfitting physical spaces with RFID/NFC tags, QR codes or Bluetooth beacons (in 

[14], this process is called physical registration). As such, this linking mechanism incurs a serious 

setup effort. On the other hand, tagging directly supports entities with dynamic locations (e.g., 

people, moving art exhibits). Moreover, tagging technologies are already being deployed on a sizable 

scale. According to a recent study, usage of QR codes in Europe doubled in 2012, leading to an 

estimated 17,4 million users scanning QR codes35. RFID tags are seeping into everyday life as well, 

embedded inside personnel ID cards and public transportation tickets, put on library books and retail 

goods, and used to quickly perform wireless payments36. Although the outlook seems promising, 

neither QR codes nor RFID tags are yet deployed on large enough scale whereby arbitrary physical 

spaces are connected to online information. Furthermore, it should be noted that not all tagging 

technologies currently support the fully automatic detection of tagged entities, and require some 

user interaction. For instance, QR codes need to be manually scanned with a camera, while low-

distance RFID readers require close proximity. 

Compared to tagging, positioning does not rely on an outfitted environment. Instead, it only requires 

the user’s mobile location, captured either via outdoor (e.g., GPS) or indoor (e.g., IR beacons; WiFi 

RSSI [50]) positioning technology. However, a service is also needed that keeps absolute positions of 
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physical entities in the region, resulting in infrastructure costs. This drawback can be reduced by 

relying on existing datasets and APIs, such as LinkedGeoData and the Google Places RESTful API37. 

LinkedGeoData provides a query endpoint that can be used to retrieve semantic data on nearby 

entities, in a radius around the user’s current location. While the Google Places API does not allow 

retrieving arbitrary semantic data, it supplies limited structured data such as name, type, opening 

hours, etc., as well as a URL pointing to more information38. Finally, it can be noted that the 

positioning mechanism does not directly support physical entities with dynamic locations (e.g., 

people), as this would require continuously updating the online server with new locations. 

From the above, it may be concluded that both linking mechanisms suffer from shortcomings, 

ranging from inadequate deployment and necessitating manual effort to requiring external online 

services. Some of these issues will likely be resolved over time, by for instance deploying tags on a 

larger scale, or increasing RFID reader range to reduce manual effort. However, at this time, it is clear 

that a context-acquisition framework should focus on leveraging both linking mechanisms to robustly 

support heterogeneous environments. 

3.2.2 Detection techniques 

In order to support a wide range of heterogeneous environments, multiple linking mechanisms need 

to be used interchangeably and in parallel. The Detection Layer comprises detection techniques, 

which rely on linking mechanisms to detect physical entities in the user’s surroundings, and locate 

associated semantic data. Reflecting the nature of SCOUT as a client-side approach, with minimal 

reliance on external infrastructures, detection techniques are grouped into two categories; direct 

detection techniques, which directly detect physical entities in the user’s vicinity (e.g., via RFID 

readers), and indirect detection techniques, which rely on an external service for detection. Below, 

we elaborate on both categories. 

Direct detection techniques utilize a hardware component (e.g., RFID reader, camera) to directly 

detect physical entities and locate their online semantic data. For instance, an RFID reader 

automatically detects nearby tags and reads their contents (e.g., URL); while users can point their 

smartphone cameras at QR codes to decode them into URLs. As such, these detection techniques 

leverage the tagging mechanism (see section 3.2.1). In our case, tags need to be loaded with the 

locations of the associated semantic data. Currently, the Detection Layer provides support for the 

following direct detection techniques: RFID tags, QR codes, and Bluetooth beacons.  

Indirect detection techniques utilize external services for detection, whereby the local client passes 

on a piece of mobile context (e.g., current location). For instance, the client encodes the user’s 

location in a query to the LinkedGeoData query endpoint, which returns semantic data on nearby 

physical entities. In the result data, the entity’s resource URI (or e.g., rdfs:seeAlso value) can point to 

an online semantic source. Consequently, these detection techniques typically leverage the 
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positioning linking mechanism (see section 3.2.1). Comparable to direct detection, these online 

services need to return the locations of online metadata describing physical entities. Currently, the 

Detection Layer supplies techniques that utilize the LinkedGeoData query endpoint and the Google 

Places API. A custom “location directory” service is also supported, which needs to be deployed on a 

remote server. As this location directory allows quickly and easily setting up new environments, this 

service was often used in experiments.  

Aside from online semantic data locations, a detection technique also needs to return detection data 

that can be used to infer spatial relations in the Spatial Layer (see section 3.3). This detection data 

can range in accuracy from the entity’s precise coordinates (e.g., retrieved from an online service in 

case of indirect detection) to the technology’s maximum detection range (e.g., in case of the RFID 

detection technique). Furthermore, a detection technique may also directly return associated 

metadata, as opposed to online locations of such metadata. For instance, in case of high-capacity 

RFID tags, this metadata can be directly read from the tag; or indirect detection techniques can 

directly retrieve this data from the online services. Importantly, we envision this directly returned 

metadata to encode geographical data, such as the physical entity’s geometry (e.g., for buildings) and 

absolute coordinates, described using a domain-specific ontology (e.g., GeoFeatures39). This 

information can be used to infer spatial relations more accurately (see section 3.3.1). 

3.3 Spatial Layer 

The responsibility of the Spatial Layer is to supply, and maintain, high-level spatial information, based 

on detection information received from the Detection Layer. This spatial information denotes 

whether the user is nearby, or inside, another physical entity (e.g., building); and whether physical 

entities themselves are nearby each other or containing one another.  

A flexible mechanism is in place to infer and maintain spatial information. This mechanism is 

centered on a spatial index, which stores the spatial shapes of detected physical entities and the 

user. Currently, the spatial index is implemented using an R-tree. We consider an entity’s spatial 

shape to denote its geometric shape (i.e., point, circle or polygon), as well as its absolute location 

(e.g., vertex coordinates). Using the spatial index, it can be checked whether a newly detected entity 

is nearby (or inside / containing) the user or another, previously detected physical entity. 

Below, we elaborate on the process flow occurring in the Spatial Layer whenever new entities are 

detected, or when the user’s absolute position changes (section 3.3.1). The core implementation of 

this layer is reviewed in section 3.6.2. 

3.3.1 Inferring high-level spatial information 

The Spatial Layer receives notifications from the Detection Layer whenever new entities are 

detected. Also, the layer is notified in case the mobile user’s location changes, since this may lead to 
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some entities (no longer) being spatially related. Below, we elaborate on the process flow that 

ensues when receiving such notifications. 

In order to infer spatial information, the Spatial Layer relies on a spatial index, which stores the 

spatial shapes of physical entities (including detected entities as well as the user). Therefore, a first 

step after receiving a detection event is to approximate the spatial shape of the detected entity, 

including its geometric shape and absolute location. This step may be skipped in case of a location 

update event, as the passed user’s spatial shape already includes the correct geometric shape40 and 

location (e.g., obtained via GPS). Afterwards, the new spatial shape is passed to the spatial index, 

returning entities that are spatially related to the detected entity or the user. After searching, the 

spatial shape is added to the spatial index, possibly replacing its previous entry. Based on the search 

results, two lists are created, respectively containing 1/ physical entities nearby the particular entity, 

and 2/ entities that are no longer nearby. This spatial info is passed to the Environment Layer, 

enabling the layer to manage spatial relations (see section 3.4.2.2). Below, we elaborate on each step 

in more detail. 

Step 1. Approximating the spatial shapes 

For detected entities, associated spatial shapes need to be derived based on the available detection 

data. The accuracy of the derived spatial shapes depends on the precision of the detection data. 

Three cases are possible:  

1/ Exact spatial shape is known: A detection technique may directly return metadata describing the 

physical entity, in addition to the location of online semantic data (see section 3.2.2). In case this 

metadata encodes a geographical description (described using a supported format), the exact spatial 

shape is immediately available. For instance, such metadata can be directly returned by an online 

service utilized by the detection technique, and can encode the entities’ coordinates and geographic 

shape (e.g., point, polygon). 

2/ Precise detection range is known: In case the exact spatial shape is not known, it needs to be 

approximated. Certain technologies, such as RFID, can return the exact range at which the entity was 

detected [79]. If the detection range is known, it may be inferred that the entity’s geometric shape is 

a point located on a circle’s edge, which is centered on the user’s position (at detection time) with as 

radius the detection range. 

3/ Maximum detection range is known: In case no other detection data is available, we need to rely 

on the maximum detection range of the employed detection technique. In this case, it is inferred that 

the entity represents a geometric point located somewhere inside a circle, centered on the user’s 

position (at detection time) with as radius the detection range. Clearly, this represents the most 

imprecise approximation. 
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Step 2. Utilizing the spatial index 

In the second step, the spatial index is searched to retrieve entities that are nearby or 

inside/contained by either the detected entity, in case of a detection event; or the user entity, in case 

of a location update. To perform the search, the spatial index requires two pieces of information. 

Firstly, it needs the particular entity’s spatial shape, possibly approximated in the previous step. 

Secondly, it requires the maximum distance where entities are still considered to be nearby, called 

the “nearness distance”. This information is passed to the spatial index in the form of a spatial query. 

After the search has been performed, the entity in question is added to the spatial index, together 

with its spatial shape. In case the entity was already present (e.g., it was detected before), its entry 

will be replaced by the new spatial shape. In section 3.6.2.3, we elaborate on the implementation of 

the spatial index. 

Step 3. Determining spatial information 

The final step involves determining 1/ which physical entities are spatially related with the particular 

entity (i.e., detected physical entity or the user), and 2/ which entities are no longer spatially related. 

The physical entities returned from the spatial index search (see above) constitute the first list.  

In order to obtain the second list, the Spatial Layer first requires the list of physical entities previously 

found to be spatially related to the particular entity. For this purpose, the Environment Layer is 

contacted, where the necessary information is encoded in the Spatial Model41 (see section 3.4.2). 

Afterwards, it is determined whether these physical entities are still spatially related to the entity in 

question. In more detail, this is done by checking whether the spatial shapes of the aforementioned 

physical entities are still nearby the particular entity’s spatial shape, given the predefined nearness 

distance; or whether the spatial shapes are still containing one another, given their geometric shapes 

and absolute locations. 

After constructing the two lists, the Environment Layer is contacted, passing along the entity in 

question together with its list of spatially related / non-spatially related entities. The related spatial 

shapes, which may be potentially relevant to mobile applications (e.g., mobile apps with a map view), 

are also supplied. Based on this information, the Environment Layer creates, updates or invalidates 

high-level spatial relations between physical entities. For more information on this step, we refer to 

section 3.4.2.2. 

3.4 Environment Layer 
The Environment Layer provides applications with an abstract, integrated view of the user, his 

environment, and the physical entities in it. This view is called the Environment Model. The 

Environment Layer maintains two local, concrete models, which provide vital information for this 

view. The User Model stores the user’s characteristics, preferences, and device information; while 
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the Spatial Model encodes high-level spatial information between the user and physical entities, in 

the form of spatial relations. Both models have associated components to manage access and keep 

the information up-to-date.  

A third, essential part of the Environment Model constitutes the online semantic dataset, which 

comprises descriptive information on physical entities in the user’s vicinity. To achieve integrated 

query access to this online dataset, the Environment Layer employs the mobile query service, which 

is detailed in Chapter 4. Mobile applications utilize the Environment Notification Service and 

Environment Query Service to achieve push- and pull-based access to the Environment Model, 

respectively.  

Below, we elaborate on the two concrete models and their manager components. Then, we detail 

the Environment Model. The core implementation of this layer is summarized in section 3.6.3.  

3.4.1 User Model 

The User Model stores the user’s characteristics and preferences, as well as device information, 

respectively using ontologies such as Friend of a Friend42 (FOAF) and Composite 

Capabilities/Preferences Profiles43 (CC/PP). As a result, the User Model enables mobile applications 

to personalize their content and functionality to the user and his device. An example User Model 

instance, as well as the User Model ontology can be found in Appendix A and on 

http://wise.vub.ac.be/william/phd/index.htm#scout.  

The User Model management component keeps the User Model data in an RDF graph. We supply the 

user with a mobile configuration tool, which allows him to update and remove personal information 

from the User Model. We shortly discuss this tool below. 

3.4.1.1 Mobile User Model configuration tool 

In Figure 3-2 and Figure 3-3, we show screenshots of the developed configuration tool, which 

features a mobile user interface to update the User Model.  
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Figure 3-2. SCOUT Environment Layer: Screenshots of the mobile User Model configuration tool (1). 

The mobile UI consists of a navigable form, loaded with information from the User Model (see Figure 

3-2/a). An important goal of the UI is to provide a good overview of the user model data, to increase 

usability and cope with limited mobile screen sizes. Firstly, properties sharing the same predicate 

(e.g., interest) are grouped into a collapsible list (see Figure 3-2/b), which can be unfolded to show 

the individual properties (see Figure 3-2/c). Secondly, property values which themselves have 

associated properties (e.g., Mobile_computing interest, see Figure 3-2/c), are accompanied by a 

short summary. To view and edit all of its properties, the user can click the Edit button at the left 

bottom of the property value’s field. After clicking, the form is loaded with the property value’s own 

description, as shown in Figure 3-3/a. In order to navigate back to the previous form, the user clicks 

the Back button. Property values can be navigated this way up to an arbitrary depth.  

An effort is also made to make RDF values more readable, by reducing URIs to their local names44. 

This is exemplified in Figure 3-2/c, where the URI 

http://ebiquity.umbc.edu/ontology/research.owl#Mobile_computing is reduced to its local name 

Mobile_computing. When clicking on a field, the full URI is shown (see Figure 3-3/b). At any time, the 

user can click the Save button to store the updated information (see Figure 3-3/c). 
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 An exception is made for URLs pointing to online information, as indicated by the related predicate (e.g., 
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(a) (b) (c) 

http://ebiquity.umbc.edu/ontology/research.owl#Mobile_computing


 
 
 
SCOUT, a Mobile Context-Provisioning Framework  81 
 

   

Figure 3-3. SCOUT Environment Layer: Screenshots of the mobile User Model configuration tool (2). 

In section 3.6.3.1, the implementation of the configuration tool is detailed. 

3.4.2 Spatial Model 

The Spatial Model encodes high-level spatial information about the user’s environment. More 

specifically, it keeps time-stamped spatial relations between the user and physical entities, as well as 

between physical entities themselves. As a result, the Spatial Model enables mobile applications to 

become location-aware, without having to deal with low-level data (e.g., position readings or sensing 

data). Based on notifications from the Spatial Layer (see section 3.3), the Spatial Model manager 

component keeps the Spatial Model up-to-date. 

Below, we detail the contents of the Spatial Model (section 3.4.2.1). Then, we elaborate on how it is 

kept up-to-date (section 3.4.2.2).  

3.4.2.1 Spatial Model contents 

The Spatial Model keeps spatial information in the form of high-level spatial relations. Concretely, 

the model corresponds to a reified RDF graph, representing each spatial relation as a reified RDF 

statement. These spatial statements have as subject and object the URI resources identifying the 

participating entities, while their predicate indicates the type of spatial relation. The Spatial Model 

ontology (with namespace prefix “sm”) defines these predicates, which include sm:isNearby, 

sm:contains and  sm:containedIn, respectively denoting nearness and (reverse) containment. In case 

two physical entities are no longer spatially related, the spatial relation is invalidated, which involves 

(a) (b) (c) 
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replacing the predicate of the spatial statement by sm:wasNearby, sm:contained and 

sm:wasContainedIn, respectively. 

By reifying these spatial statements, additional facts can be stated about them. Currently, the Spatial 

Model keeps timestamps for each spatial statement using the sm:from and sm:to predicates, 

indicating the interval during which the spatial relation was valid. Other pieces of information could 

also be kept about these spatial statements, such as the level of certainty (e.g., in case of 

approximated positions; see section 3.3.1). Since spatial relations are reciprocal (e.g., a user 

contained in a building means that the building contains the user), each conceptual spatial relation is 

serialized twice in the model. In addition, the Spatial Model keeps useful information passed from 

the layers below. In particular, it stores the spatial shapes of the detected entities, which indicate the 

physical entity’s geometric shape and coordinates, and serializes these shapes as RDF data using the 

GeoFeatures45 ontology. This RDF-encoded location is indicated using the sm:lastKnownLocation 

predicate. For instance, this spatial data can be useful for mobile applications keeping a map view.  

Figure 3-4 shows the graphical representation of an example Spatial Model. In this model, the user 

(http://wise.vub.ac.be/william) was contained in (sm:wasContainedIn) the athletics track 

(http://www.vub.ac.be/campus/atletiekpiste). Currently, the user is nearby (sm:isNearby) ‘t Complex 

(http://tcomplex.be/rdf) and contained in (sm:containedIn) the HealthCity fitness centre 

(http://healthcity.be/etterbeek). Furthermore, ‘t Complex (http://tcomplex.be/rdf) itself is also 

located nearby (sm:isNearby) the HealthCity fitness centre (http://healthcity.be/etterbeek). Each 

spatial statement is reified and accompanied by timestamps (sm:from, sm:to), indicating the start-

time, and potentially end-time, of the spatial relation. Each of entity URI resources are also linked to 

their last known absolute location (indicated by sm:lastKnownLocation), which is represented using 

the GeoFeatures ontology (for brevity, we only show the full location for the user).  
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Figure 3-4. SCOUT Environment Layer: Example Spatial Model. 

The Spatial Model ontology, as well as an example Spatial Model instance, can be found in Appendix 

A and on http://wise.vub.ac.be/william/phd/index.htm#scout. Below, we elaborate on the 

mechanism keeping the Spatial Model up-to-date. 

3.4.2.2 Keeping the Spatial Model up-to-date 

In case the user’s location has changed, or a new physical entity was detected, the Spatial Layer 

passes two lists of entities; respectively keeping spatially related physical entities, and entities that 

are no longer spatially related (see section 3.3.1).  

For each of the entities in the first list, a new spatial relation is created with the particular entity (i.e., 

user or detected entity) if none yet exists. For the second list, each existing spatial relation between 

the listed entities and the entity in question is invalidated. As mentioned, this involves replacing the 

spatial relation predicate (e.g., replacing sm:isNearby with sm:wasNearby) as well as adding an 

invalidation timestamp (indicated by sm:to). For each creation and invalidation event, the RDF-

encoded locations of the participating entities are updated in the Spatial Model, thus supplying 

mobile applications with the entities’ last known locations (indicated via sm:lastKnownLocation). The 

http://wise.vub.ac.be/william/phd/index.htm#scout
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user’s last known location is continuously updated in the model as he is moving around, based on 

location updates from the Spatial Layer.  

3.4.3 Environment Model 

The Environment Model represents an abstract, integrated view on the user’s physical environment 

and context, comprising the concrete User Model, Spatial Model and assembled online semantic 

sources describing physical entities. It allows mobile applications to fire queries referencing any part 

of the user’s current and previous physical surroundings, as well as the user’s profile, without having 

to separately query each data source. Instead, the Environment Model manager combines the 

necessary data sources at query time, executes the query, and returns the results.  

An important part of the Environment Model is the online semantic dataset describing the user’s 

current and previous surroundings. In order to access this dataset, the Environment Model manager 

component relies on our mobile query service (see Chapter 4), which allows for the transparent 

querying of an online semantic dataset comprising small semantic sources. In order to outline our 

relevant dataset, the Environment Model manager communicates the online locations of semantic 

data, describing nearby physical entities, to the query service. When executing a query, the manager 

contacts the query service to obtain a selection of the online dataset relevant to the given query. This 

query-relevant selection, together with the concrete User Model and Spatial Model, is assembled 

into an RDF graph on which the query is executed.  

Mobile applications can access the Environment Model in a push- and pull-based way, respectively 

via the Environment Notification Service and Environment Query Service. In section 3.6.3.2, an 

overview of the Environment Model implementation can be found.  

3.5 Application Layer 
The Application Layer comprises mobile applications that utilize the context services supplied by the 

Environment Layer. Below, we shortly summarize each application, focusing on how they utilize 

these services to realize their functionality. In section 3.6.4, we discuss in more detail how these 

mobile applications invoke the SCOUT API. For more information on these applications, we refer to 

Chapter 6. 

- The Person Matcher [31] mobile application pro-actively identifies nearby people of interest, and 

pushes them to the user. The app demonstrates the data filtering capabilities of the SCOUT 

framework, by utilizing the push-based query access to be notified of nearby people and their 

online FOAF profiles. 
 

- COIN [29, 32] stands for a client-side web augmentation approach, which injects context-aware 

features into existing websites on-the-fly. In this way, visited websites can be automatically 

enriched to suit the mobile user’s needs, which are often related to their current environment 

(e.g., find the closest metro station connecting to the university campus). To achieve this 
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augmentation task, COIN thus requires access to rich environment context, while it should also 

be notified of context changes to keep injected features up-to-date. For this purpose, it utilizes 

the push-and pull-based context access services provided by SCOUT. 
 

- AdaptIO [30] dynamically adapts the obtrusiveness of mobile interactions to suit the user’s 

current situation. In order to accurately define and determine obtrusive situations (e.g., in a 

meeting), across heterogeneous and previously unknown environments, AdaptIO requires rich 

environment context, potentially collected from minimally outfitted surroundings. AdaptIO relies 

on SCOUT to retrieve the desired context, as SCOUT is particularly suited to collect context in 

heterogeneous (and minimally outfitted) environments, by utilizing multiple detection 

techniques interchangeably and in parallel. 

3.6 Implementation 
This section summarizes the core implementation of the different layers, being the Detection Layer 

(section 3.6.1), Spatial Layer (section 3.6.2), and Environment Layer (section 3.6.3). These sections 

are accompanied by UML class diagrams showing the core classes46 used in the implementation. 

Finally, we illustrate how three existing mobile applications, situated in the Application Layer, 

concretely invoke the SCOUT context services API (section 3.6.4). 

3.6.1 Detection Layer 

This section presents a bottom-up overview of the Detection Layer implementation. We start by 

discussing classes that wrap concrete sensing technologies (e.g., GPS, RFID), which enable detection 

techniques to leverage linking mechanisms (e.g., positioning, tagging) while abstracting from 

technology-specific details and drivers (section 3.6.1.1). Then, we detail the detection technique 

implementation (section 3.6.1.2).  

3.6.1.1 Sensing technologies 

This section discusses abstract sensing classes, including TagReader and LocationProvider, which 

encapsultate the sensing capabilities of mobile devices (i.e., tag reading and position capturing). 

Subclasses of these abstract classes wrap specific sensing hardware and drivers, for instance the 

Cathexis IDBlue RFID reader47 and the Android GPS API.  

To cope with the heterogeneity of sensing technologies across mobile devices, we utilize the Abstract 

Factory design pattern [80]. We also observe that most sensing technologies inherently work in a 

push-based way, whereby new sensing results are pushed to interested clients (in our case, detection 

techniques). For instance, the user utilizes the camera to capture QR codes, after which the codes 
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need to be pushed to the QR detection technique. In other cases, sensing actions should be 

automatically performed at certain moments, after which the results are pushed to related detection 

techniques. For instance, as the mobile user is walking around, RFID readers should frequently read 

nearby tags, in order to detect the user’s new surroundings; whereby reads occur after certain time 

intervals, or after the mobile user has moved a certain distance. In this example, the RFID detection 

technique needs to be automatically kept up-to-date of the data read by the RFID reader. The 

abstract sensing classes implement the Observer design pattern [80], whereby listeners are notified 

in case of new sensing results and can specify the desired sensing moments. We discuss the abstract 

sensing classes, together with their implementing subclasses, below. 
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Figure 3-5. SCOUT Detection Layer: TagReader package. 

Figure 3-5 shows the TagReader package. This package contains classes supporting the tag reading 

capabilities of mobile devices (e.g., RFID), and is used by detection techniques relying on the tagging 

linking mechanism (e.g., direct detection techniques). The TagReader class wraps tag reading 

technologies such as RFID, QR and Bluetooth. TagReader provides push- and pull-based access to tag 

contents, whereby the former involves notifying registered TagListeners with the tag contents. These 

tag contents are wrapped in a ReadTag instance, keeping the read string as well as the detected 

range of the tag and its absolute location (if any). There are currently three implementation classes: 
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IDBlueWrapper, which wraps the Bluetooth driver communicating with the external Cathexis IDBlue 

pen (see org.tzi.rfid.jidblue package); QRWrapper, which wraps the Zxing QR code reader48; and 

BtBeaconWrapper, which wraps communication with a Bluetooth beacon.  

 

Figure 3-6. SCOUT Detection Layer: LocationProvider package. 

In Figure 3-6, we show the LocationProvider package. This package keeps classes supporting the 

positioning capabilities of mobile devices (e.g., GPS), and is thus useful for detection techniques 

relying on the positioning linking mechanism (e.g., indirect detection techniques). The 

LocationProvider class returns a Location object, which keeps a spatial shape representing the user 
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(e.g., point) together with his absolute coordinates. For more information on Location and Position 

objects, we refer to Figure 3-12. LocationProvider supplies both push- and pull-based access to the 

user’s location, whereby push-based access involves notifying the registered LocationListeners of the 

user’s new location. LocationProviderFactory is an abstract factory for the LocationProvider class.  

 

Figure 3-7. SCOUT Detection Layer: ActivityMode package. 

Figure 3-7 shows the ActivityMode package. In order to automatically execute sensing actions at 

particular moments (e.g., RFID readings), the generic ActivityMode class is used. In general, an 

ActivityMode instance represents a certain task execution strategy, and is able to execute a given 

ActivityTask instance corresponding to the particular execution strategy. Subclasses include 

ContinuousMode, which stand for a continuous execution of tasks; IntervalMode, which denotes 

executing tasks after a given interval has passed; and ConditionMode, whereby tasks are executed 

each time an arbitrary condition is satisfied. PosChangedMode is a subclass of ConditionMode, and 

executes tasks each time the user’s position has changed by a specified distance. This subclass relies 

on LocationProvider (see Figure 3-6) to obtain push-based access to the user’s location. An 

ActivityMode can execute arbitrary tasks, represented as ActivityTasks; in our case, ActivityTask 

instances encapsulate sensor reading operations. It should be noted that certain sensing actions, 
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such as QR code readings via the device camera, are initiated by the user and thus cannot be 

controlled by an ActivityMode strategy. 

We observe that PosChangedMode is particularly useful in our mobile setting, as it allows 

automatically executing sensor readings (e.g., via RFID) to discover the user’s new environment, each 

time he has moved a significant distance.  

3.6.1.2 Detection techniques 

A detection technique has several responsibilities. It needs to detect physical entities in the user’s 

vicinity, and locate their associated online semantic data. Furthermore, a detection technique should 

return detection data, such as the detected entity’s absolute position or maximum detection range, 

in order to allow the Spatial Layer to infer spatial relations (see section 3.3). Detection techniques 

follow the Observer design pattern, notifying other framework objects of detected entities. Below, 

we discuss the abstract detection technique classes, together with their implementing subclasses. 

 
Figure 3-8. SCOUT Detection Layer: DetectionTechnique package. 

Figure 3-8 shows the DetectionTechnique package. Framework classes, which implement the 

DetectionListener interface, can register with a DetectionTechnique to be notified in case of entity 

detections. If relevant, a detection technique can be loaded with an ActivityMode (see Figure 3-7) to 

define when detection actions should be automatically performed (e.g., in case of RFID). This 

ActivityMode can then be passed to the TagReader / LocationProvider instances utilized by the 

DetectionTechnique subclass.  
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An individual detection is represented by a DetectedEntityEvent object, while the DetectedEntity 

class stands for detected entities themselves. In addition to a DetectedEntity object, a 

DetectedEntityEvent instance also keeps detection data, including the detection range and absolute 

location of the detected entity (if any), timestamp of the detection, and the related detection 

technique itself. A DetectedEntity object keeps the URL pointing to the associated online semantic 

data, while it can also keep descriptive metadata directly retrieved by the detection technique (e.g., 

read from a high-capacity RFID tag). In case this metadata encodes a spatial description of the 

detected entity, DetectionTechnique attempts to convert the metadata to objects representing the 

information (see Figure 3-12). Currently, the detection layer supports spatial descriptions 

represented using the GeoFeatures49 and WGS84 [81] ontologies, as well as the Well-Known Text 

(WKT) format [82]. 

 
Figure 3-9. SCOUT Detection Layer: DirectDetectionTechnique package. 

In Figure 3-9, we show the DirectDetectionTechnique package. A DirectDetectionTechnique directly 

detects physical entities using a particular tag sensing technology (e.g., RFID). The subclass 
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 http://www.mindswap.org/2004/geo/geoOntologies.shtml (access date: 08/03/2013) 
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TagDetectionTechnique represents detection techniques relying on tag-reading technology, as 

represented by TagReader (see Figure 3-5). The TagDetectionTechnique has three subclasses, based 

on the particular tagging technology; RFIDDetectionTechnique, QRDetectionTechnique and 

BluetoothDetectionTechnique. As detection data, each DirectDetectionTechnique subclass should 

minimally return the tag reader’s maximum detection distance, while additional data can be 

provided as well, based on the capabilities of the utilized TagReader. The configured ActivityMode is 

passed on to the TagReader to realize the entity detection strategy, whereby the 

TagDetectionTechnique registers as a TagListener. To support the BluetoothDetectionTechnique, we 

implemented a simple BluetoothBeacon in Java (diagram not shown) that listens for incoming 

Bluetooth connections, as received from the BtBeaconWrapper (see Figure 3-5). This 

BluetoothBeacon is connected to a hardware Bluetooth receiver near a physical entity, and returns 

online semantic data locations as well as some metadata on the entity (in our case, encoding the 

entity’s spatial data). 
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Figure 3-10. SCOUT Detection Layer: IndirectDetectionTechnique package. 

Figure 3-10 shows the IndirectDetectionTechnique package. An indirect detection technique relies on 

an external service to perform detection. Specifically, the service is contacted with a piece of the 

mobile user’s context (e.g., location), where the service responds with context-relevant physical 

entities (e.g., location-related) and references to their online metadata. Subclasses of 

IndirectDetectionTechnique differ based on the context required by the external service. Currently, 

the only supported subclass is the LocBasedDetectionTechnique, which contacts the service with the 

user’s location obtained via a LocationProvider object (see Figure 3-6). Analogously to 

DirectDetectionTechnique, the LocBasedDetectionTechnique realizes the detection strategy by 

passing the configured ActivityMode to the LocationProvider and registering as a LocationListener.  
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LocBasedDetectionTechnique has three concrete subclasses, namely LinkedGeoDataClient, 

GPlacesClient and LocDirClient. The GPlacesClient leverages the Restful API of Google Places to 

obtain structured XML data on registered entities in the user’s vicinity. This XML data includes a URL, 

potentially pointing to online semantic data describing the entity. In addition, the returned XML data 

specifies the geometry of the entity as well as its absolute coordinates. Based on the returned XML 

data, DetectedEntityEvent objects are populated and pushed to the registered DetectionListeners 

(see Figure 3-8). The LinkedGeoDataClient relies on the SparqlEndpointClient class to send a query to 

the LinkedGeoData online SPARQL query endpoint, parameterized with the user’s current location. 

Using the returned RDF data, DetectedEntityEvent objects are likewise instantiated. Finally, the 

LocDirClient contacts an external server that deploys our LocationDirectory application (diagram not 

shown), which is built on top of a geographical database (PostgreSQL extended with PostGIS50). Given 

the user’s current coordinates, the server returns data on registered entities in the user’s vicinity, 

including URLs pointing to online semantic web data as well as associated coordinates and geometric 

shapes. We developed a simple JSP web application that allows users to easily add new physical 

entities to the database, by drawing rectangles representing their spatial shape on a Google Map and 

associating them with a URL.  

3.6.2 Spatial Layer 

This section reviews the implementation of the Spatial Layer. First, we show the SpatialManager 

class, and discuss how it communicates with classes from the Detection Layer to receive detection 

and location updates (section 3.6.2.1). Then, we show the Location package (which includes the 

SpatialShape class), and consider how approximate locations are represented (section 3.6.2.2). We 

present the SpatialEntityIndex package, which stands for the spatial index utilized to infer spatial 

information (section 3.6.2.3). Finally, we elaborate on the RectangleIndex package, which 

incorporates a rectangle-based implementation of the spatial index (using an R-tree data structure), 

and discuss how generic spatial shapes (e.g., circles) may be stored and retrieved using such an 

implementation.  
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3.6.2.1 SpatialManager 

 

Figure 3-11. SCOUT Spatial Layer: SpatialManager class. 

Figure 3-11 shows the SpatialManager class, which is registered as a DetectionListener with the 

supported detection techniques. Whenever one of the detection techniques detects new physical 

entities, the SpatialManager object is notified, which starts the process for inferring spatial 

information (see section 3.3.1) that involves contacting the SpatialEntityIndex instance (see section 

3.6.2.3). Similarly, the SpatialManager is registered as a LocationListener with the default 

LocationProvider. In case the user’s location changes, the SpatialManager is notified, likewise causing 

the spatial information inferring process to ensue. The DetectionTechniques and LocationProvider 

are configured with specific ActivityModes (see Figure 3-7) to determine suitable detection and 

location-providing strategies. For instance, this enables the SpatialManager to be notified by a 

LocationProvider (see Figure 3-6) of the user’s new location whenever it changes by a certain 

distance (e.g., 5m). 
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3.6.2.2 Locations and spatial shapes 

 

Figure 3-12. SCOUT Spatial Layer: Location package, including SpatialShape. 

In Figure 3-12, we show the package containing the Position, SpatialShape and Location classes. 

SpatialShape stores a geometric figure together with the positions of its vertex/vertices (e.g., polygon 

nodes, circle center). A Location keeps a physical entity’s SpatialShape, and thus represents the 

entity’s spatial presence in the world. As discussed in section 3.3.1, it is possible an entity’s spatial 

shape is not accurately known. To represent absolute positions as well as approximate positions, the 

Position class has two subclasses: AbsolutePosition and ApproximatePosition. AbsolutePosition keeps 

the absolute longitude and latitude coordinates. ApproximatePosition keeps the SpatialShape in 

which the position is known to be located (e.g., circle with maximum detection range as radius), as 

well as the relative position in that shape (e.g., somewhere inside the circle or on the circle’s edge) 

indicated by the RelativePositions enumeration. Currently, in case of approximation, an entity’s 
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location is represented by a SpatialPoint object, keeping as position a particular ApproximatePosition 

instance.  

Below, we elaborate on the implementation of the spatial index. 

3.6.2.3 Spatial entity index 

The SpatialEntityIndex package is shown in Figure 3-13. SpatialEntityIndex stores the spatial shapes 

of detected physical entities as well as the user, and allows inferring spatial information. By treating 

the user as any other entity in the index, it can be easily checked whether the user and physical 

entities are spatially related, as well as physical entities themselves.  

 

Figure 3-13. SCOUT Spatial Layer: SpatialEntityIndex package. 

A SpatialEntityEntry object represents an entity to be stored in the spatial index, and keeps the 

entity’s associated URL and spatial shape. A SpatialQuery represents a search into the 

SpatialEntityIndex. It requires the spatial shape of the search entity, as well as the maximum distance 

at which entities are still considered to be nearby (called nearness distance). In response, the spatial 

index returns indexed, spatially related entities in the form of LocationEvent subclass objects 

(subclasses not shown). Subclasses of SpatialEntityIndex leverage a specific spatial index 

implementation to store and retrieve spatial shapes. Currently, there is only one subclass called 

RectangleEntityIndex, which utilizes a rectangle-based implementation (represented by 

RectangleIndex). Below, we elaborate on this subclass. 
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3.6.2.4 Rectangle-based index 

Figure 3-14 shows the RectangleIndex package, which stands for a rectangle-based spatial index. 

Currently, RectangleIndex has one concrete subclass, namely RTreeIndex, which relies on an R-tree 

data structure to index spatial shapes. Below, we elaborate on how the aforementioned 

SpatialEntityEntries, as well as SpatialQueries, are transformed to suit rectangle-based indices. 

 

Figure 3-14. SCOUT Spatial Layer: RectangleIndex package. 

The generic spatial shapes first need to be converted to rectangular shapes. In case absolute 

positions are available (see Figure 3-12), spatial circles and polygons are converted to their smallest 

encompassing rectangle, while a spatial point is converted to a rectangle point51. As mentioned in 

section 3.6.2.2, an entity’s approximated shape is represented by a spatial point with an approximate 

position, which is somewhere inside a specific circle (case 1; in case only the maximum detection 

range is known) or on the edge of the circle (case 2; in case detection distance is known). The goal is 

to convert these approximate positions to the smallest rectangles encompassing all potential 

positions. In case 1, the associated circle will be converted to the smallest encompassing rectangle. In 

case 2, rectangles will be created to encompass the circle’s edge, narrowing down the potential 
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 I.e., a rectangle with left-bottom coordinate x1, y1 and right-top coordinate x2, y2 where x1=x2 and y1=y2. 
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positions. This is illustrated in Figure 3-15, where 4 rectangles52 are created to capture the circle’s 

edge. 

Comparable to SpatialEntityEntry, the RectangleIndexEntry class represents entries stored in a 

RectangleIndex instance. After generating the rectangles, a new RectangleIndexEntry object is 

created with the original SpatialEntityEntry as payload. This rectangle index entry is stored by the 

RectangleIndex, whereby it will be indexed on its generated rectangles.  

 

Figure 3-15. SCOUT Spatial Layer: An approximate position (case 2) converted to a set of rectangles. 

A spatial query involves the search entity’s spatial shape as well as the configured nearness distance. 

Typically, a rectangle-based index implementation, at the very least, supports checking whether a 

given rectangle overlaps with any of the indexed rectangles (e.g., this was the case for the R-tree 

implementations we investigated). Consequently, the search spatial shape is first converted to a set 

of rectangles, following the process mentioned above. Then, these rectangles are expanded with the 

nearness distance, by adding the distance to each of the resulting rectangles’ width and height. This 

set of expanded rectangles now encompasses the spatial area considered to be nearby. In case these 

expanded rectangles intersect with any of the indexed rectangles, these are considered to be nearby. 

In case the original (unexpanded) search rectangles are completely contained by an indexed 

rectangle, or vice versa, we may infer containment. This is illustrated in Figure 3-16, which shows the 

user (search rectangle) inside a building (indexed rectangle) and nearby an object A (indexed 

rectangle). A rectangle-based search specifies both a set of expanded rectangles to check for 

nearness, as well as the set of original rectangles to check for containment. In response to a search, a 

list of FoundEntry objects is returned, each comprising the found RectangleIndexEntry and the type 

of overlap (i.e., intersect or contained in / by). 

It should be noted that, in case the conversion of an approximate position leads to multiple 

rectangles (see above), overlapping with one of these rectangles is sufficient to infer spatial relations 
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with the associated entity. Future work includes determining and returning the degree of uncertainty 

for each inferred spatial relation, depending on whether the search or indexed rectangles were 

approximated. 

 

Figure 3-16. SCOUT Spatial Layer: An example search into a rectangle-based index. 

The currently supported implementation of RectangleIndex is RTreeIndex (see Figure 3-14), which 

relies on an existing R-Tree library53. An R-Tree is a balanced tree structure much like a B+-tree, 

whereby the indexed rectangles are kept in the leaf nodes [83]. Each tree node has an associated 

bounding box, corresponding to the smallest rectangle still encompassing the bounding boxes of its 

child nodes or the rectangles stored by its leaf nodes. An R-Tree can be used to check whether a 

given search rectangle intersects with any of the indexed rectangles. For each of the nodes at the 

current tree level, it is checked whether their associated bounding boxes overlap with the search 

rectangle. If so, the tree is traversed down along that node to the next level, until the leaf nodes are 

reached. Since the bounding boxes may potentially overlap, it is possible that multiple paths need to 

be followed [83].  

To cope with the limitations of the employed library, a number of extra steps had to be taken, which 

we shortly summarize here. In response to a spatial search, the RTree implementation is contacted to 

locate nearby rectangles as well as contained / containing rectangles. However, since the RTree does 

not directly support checking for containment, an additional containment check needs to occur after 

the nearby rectangles are returned. Secondly, the RTree is only able to associate integer payloads to 
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the indexed rectangles. Therefore, in order to link indexed rectangles to their RectangleIndexEntry 

instances, an extra map (called idMap) needs to be kept, connecting the integer payloads to 

corresponding RectangleIndexEntry objects. Finally, in order to remove and update index entries, the 

RTree requires the integer payload as well as its associated rectangles. This necessitates a second 

map, linking the integer payloads to their corresponding indexed rectangles (rectMap). 

3.6.3 Environment Layer 

This section describes the Environment Layer implementation. We start by reviewing the 

implementation of the User Model, focusing on the mobile configuration tool (section 3.6.3.1). Then, 

we summarize the Environment Model implementation, discussing the Environment Model manager 

component and the Environment Notification service, whereby the latter supplies push-based access 

to the model (section 3.6.3.2).  

3.6.3.1 User Model 

The mobile User Model configuration tool was implemented using HTML 4, Javascript and CSS. In 

order to mimic the native Android look-and-feel, we employed the jQuery Mobile54 framework. By 

using web technology, the tool can be easily integrated with web-based approaches such as client-

side web augmentation methods, for instance COIN [29] (see Chapter 6, section 6.2) or Sticklets [84]. 

In order to enable communication between the web-based configuration tool and SCOUT, we 

implemented a Restful API in the Environment Layer. This API allows local web applications to query 

and update the Environment and User Model in a uniform way over the HTTP protocol, via the 

loopback interface (i.e., localhost).  

Our web-based configuration tool sends HTTP requests via AJAX, which enables the tool to 

dynamically retrieve new User Model data when populating the form during navigation, and perform 

updates whenever the user selects the Save button. To bypass the AJAX cross-domain security 

restriction, we rely on a GreaseMonkey user script. Therefore, users need to use Mobile Firefox to 

run the mobile configuration tool. 

3.6.3.2 Environment Model 

Below, we elaborate on the Environment Model manager component. Then, we detail how push-

based access to the Environment Model is realized, via the Environment Notification Service. 
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EnvironmentModelManager 

 

Figure 3-17. SCOUT Environment Layer: EnvironmentModelManager package. 

Figure 3-17 shows the EnvironmentModelManager class, together with related classes. The 

SpatialModelManager class supports the Observer pattern, whereby registered observers are 

notified of the creation and invalidation of spatial relations. EnvironmentModelManager is registered 

as an observer with SpatialModelManager; for each new spatially related entity, the 

EnvironmentModelManager passes its URI resource as an online data source location to the query 

service (update method). This way, EnvironmentModelManager outlines the relevant online 

semantic dataset to the mobile query service (see section 3.4.3). Queries fired on the 

EnvironmentModelManager (executeQuery method) are executed on the User Model, Spatial Model 

and the online semantic dataset. The User Model and the Spatial Model are obtained by contacting 

their corresponding manager components (SpatialModelManager and UserModelManager classes). 

Furthermore, the mobile query service (QueryService class) is contacted to retrieve the semantic 

data selection related to the given query (getData method). The collected data is then assembled 

into an RDF graph and queried, and the results returned.  
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Push- and pull-based access to the Environment Model is respectively provided by the 

EnvironmentNotificationService and EnvironmentQueryService, whereby the latter simply delegates 

query execution to the EnvironmentModelManager. We discuss the EnvironmentNotificationService 

in more detail below.  

Environment Notification Service 

Mobile applications can obtain push-based query access to the Environment Model by registering 

queries with the EnvironmentNotificationService. These registered queries are re-evaluated 

whenever the contents of the Environment Model change; in case the query results differ from the 

previous results, the mobile application is notified. Figure 3-18 shows the diagram of the 

EnvironmentNotificationService package. 

 

Figure 3-18. SCOUT Environment Layer: EnvironmentNotificationService package. 

As the mobile user is walking around, the Environment Model is continuously extended, resulting 

from the detection of new physical entities and subsequent creation / invalidation of spatial 

relations. The EnvironmentNotificationService registers as an observer with the 

SpatialModelManager (see Figure 3-17), to be notified in case of such relation creations / 

invalidations. Mobile applications need to implement the EnvNotificationListener interface, while 
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query registrations are represented by EnvNotificationRegistration instances. For optimization 

purposes, during registration, mobile applications can narrow down the times at which the query 

needs to be re-evaluated. This is done by specifying the type of event causing the change 

(EventTypes enumeration). In case of a spatial relation event, the type of spatial relation causing the 

change (i.e., current/previous nearness or containment; SpatialRelationTypes enumeration), 

together with the URIs identifying the physical entities participating in the spatial relation 

(relevantUris attribute), can be supplied as well. For instance, a mobile application may only be 

interested in performing a particular query in case new physical entities become nearby (spatial 

relation type) the user (participating entity URI). 

When notified of new or invalidated spatial relations by the SpatialModelManager, the 

EnvNotificationService executes the registered queries on the EnvironmentModelmanager, taking 

into account the registration preferences. In case of new query results, the registered 

EnvNotificationListeners are notified via an EnvNotification instance. 

3.6.4 Application Layer 

This section illustrates how mobile applications, situated in the Application Layer, may utilize the 

SCOUT context services in their implementation. In particular, we detail how three developed 

applications access the SCOUT context services API. In Chapter 6, we discuss each of these mobile 

applications in more detail. 

3.6.4.1 Person Matcher 

The Person Matcher, which pro-actively identifies interesting people in the vicinity, registers a 

SPARQL query with the Environment Notification Service. This query returns nearby persons (type 

foaf:Person) currently nearby (sm:isNearby) the user (type um:User), together with their online FOAF 

profile location (indicated via rdfs:seeAlso or foaf:PersonalProfileDocument) (namespaces omitted 

for brevity): 
 

SELECT ?person ?foaf_profile 
WHERE { 

    ?person rdf:type foaf:Person .  

  ?stat rdf:subject ?person ; 

   rdf:predicate sm:isNearby ; 

   rdf:object ?user . 

 ?user rdf:type um:User . 

 {  

            ?person rdfs:seeAlso ?foaf_profile . 

 } UNION { 

     ?foaf_profile rdf:type foaf:PersonalProfileDocument .  

     ?foaf_profile foaf:maker ?person . 

 } 

    } 

Code 3-1. SCOUT Application Layer – Person Matcher: Query registered with the Environment 
Notification Service. 
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In more detail, the mobile app instantiates a SpatialEnvNotificationRegistration object (see Figure 

3-18), passing the query (see Code 3-1) together with a suitable configuration. In this case, the 

configuration states that the query should only be checked in case two physical entities are found to 

be nearby each other (SpatialRelationTypes enumeration), while one of these entities should be the 

user (indicated via the relevantUris array). After registering the registration object with 

EnvNotificationService (register method), the query will be re-evaluated each time a spatial relation 

is created adhering to the given conditions. A notification will be sent whenever the new query 

results differ from the previous results; in other words, when a new person becomes nearby the 

user. 

3.6.4.2 COIN 

The client-side COIN web augmentation approach injects context-aware features into existing 

websites. In a nutshell, the approach involves matching webpage content semantics to the mobile 

user’s context, with the goal of locating context-relevant page content. Afterwards, suitable features 

are injected into the identified content. 

In order to retrieve relevant context for matching, a query is executed on the Environment Model via 

the Environment Query Service. Below, we show a query that selects shops (type sumo:RetailShop) 

that are nearby (sm:isNearby) the user (type um:User) and the unique identifiers (gr:hasMPN) of 

their sold products (region:sells) (namespaces omitted for brevity):  

SELECT ?shop ?shop_product_id 

WHERE {  

  ?user rdf:type um:User . 

  ?stat rdf:subject ?user ; 

   rdf:predicate sm:isNearby ; 

   rdf:object ?shop . 

?shop rdf:type sumo:RetailShop ; 

   region:sells ?shop_product . 

  ?shop_product gr:hasMPN ?shop_product_id . 

} 

Code 3-2. SCOUT Application Layer – COIN: Query passed to both context services. 

Based on the returned context, the matching process locates page elements corresponding to 

products sold by nearby shops. In the final step, suitable features are injected; in this example, the 

aforementioned products are annotated on the page. 

The query is also registered with the Environment Notification Service. In this case, the query needs 

to be evaluated whenever an entity becomes nearby, or is no longer nearby, the user. For instance, 

this allows injecting and altering/removing features that annotate sold products, depending on 

whether the shop becomes nearby or no longer nearby the user. For this purpose, a 

SpatialEnvNotificationRegistration object is instantiated, given the above query and suitable settings.  
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3.6.4.3 AdaptIO 

The AdaptIO approach adapts the obtrusiveness of mobile service interactions, in order to suit the 

user’s current situation. The mobile user is hereby put in charge of defining obtrusive situations (e.g., 

in a meeting, or in company of others) via a mobile user interface. Importantly, this interface allows 

“capturing” the mobile user’s current situation, whereby current context data is re-used to define an 

obtrusive situation. This capturing is done by executing a query on the Environment Model via the 

Environment Query Service, which requests all physical entities that are currently spatially related 

(?spatialPred variable) to the user (type foaf:Person), together with their type (rdf:type) (namespaces 

omitted for brevity):  

SELECT ?entity ?type 
WHERE { 

?user rdf:type um:User . 

 ?stat rdf:subject ?user ; 

rdf:predicate ?spatialPred ; 

rdf:object ?entity . 

 ?entity rdf:type ?type . 

 FILTER (sameTerm(?spatialPred, sm:isNearby) ||  

  (sameTerm(?spatialPred, sm:containedBy)) 

} 

Code 3-3. SCOUT Application Layer – AdaptIO: Query executed via the Environment Query Service. 

After an obtrusive situation has been defined by the mobile user, it is converted into a logical rule 

and passed to the Environment Layer, which was outfitted with an existing reasoning engine for this 

purpose55. Each time the Environment Model is changed or extended, this reasoning engine re-

evaluates the registered rules. Any potentially inferred facts (e.g., the user’s current situation) are 

hereby added to a separate concrete model, which is part of the Environment Model. In order to be 

notified whenever the user’s current situation changes in the Environment Model, the AdaptIO 

system registers a query with the Environment Notification Service: 

SELECT ?situation 
WHERE { 

?user rdf:type um:User ; 

usm:currentSituation ?situation . 

} 

Code 3-4. SCOUT Application Layer – AdaptIO: Query registered with the Environment Notification 
Service. 

In particular, an EnvNotificationRegistration object (see Figure 3-18) is instantiated, given the above 

query and a configuration specifying that the query should be re-evaluated whenever new 

environment facts have been inferred (EventTypes enumeration). For more information on the 

AdaptIO system and related SCOUT extensions, as well as the two other mobile applications, we refer 

to Chapter 6. 
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3.7 Summary 
In this chapter, we presented SCOUT as a mobile, client-side context-provisioning framework. The 

framework consists of a layered architecture, where each task is neatly encapsulated in a distinct 

layer. This allows different technologies and mechanisms to be plugged in at each level, without 

requiring changes to the other layers.  

The Detection Layer is responsible for dynamically detecting physical entities in the user’s 

surroundings, and locating their associated online semantic data sources. For this purpose, the layer 

comprises a set of detection techniques, which leverage linking mechanisms (e.g., tagging, 

positioning) connecting the physical to the virtual world. Direct detection techniques employ a 

hardware component (e.g., RFID reader) to directly detect physical entities and identify their 

associated online data (e.g., by reading a URL from an RFID tag). Indirect detection techniques rely on 

external services for detection, whereby some contextual data (e.g., GPS position) is passed on to the 

service (e.g., online semantic dataset such as LinkedGeoData). This service then returns online 

locations of metadata describing context-relevant physical entities (e.g., in the user’s vicinity). 

Suitable detection strategies can be defined in order to determine when detections should take place 

(e.g., after an interval, or in case of position changes). Multiple detection techniques can be utilized 

in parallel and interchangeably, allowing SCOUT to be deployed across heterogeneous environments.  

The Spatial Layer abstracts low-level detection and location data, obtained from the Detection Layer, 

into high-level spatial information. Such spatial data indicates whether the user is nearby a physical 

entity or inside a place, or whether physical entities are nearby/ inside each other. By supplying 

mobile applications with such spatial data, they can easily obtain knowledge on the user’s 

surroundings while still abstracting from low-level details (e.g., detection ranges). A flexible 

mechanism is utilized to keep the spatial information up-to-date, based on a spatial index. The spatial 

index stores the spatial shapes of detected physical entities, as well as the user, whereby a spatial 

shape denotes the entity’s geometric shape and absolute location. Such spatial shapes are 

determined based on detection and location data; in case this data is inaccurate, the detected 

entity’s spatial shape will be approximated. The following process is followed after a new physical 

entity is detected, or the user’s location has changed. Firstly, the entity’s spatial shape is 

approximated (if necessary), after which the spatial index is contacted to retrieve spatially related 

entities. Afterwards, two entity lists are created; 1/ keeping physical entities spatially related to the 

particular entity (i.e., detected entity or user), and 2/ keeping entities that are no longer spatially 

related. These two lists are then communicated to the Environment Layer, together with the entity in 

question. The related spatial shapes, which may be potentially relevant to mobile applications, are 

also passed to the layer. Currently, the spatial index is implemented as an R-tree. 

The Environment Layer provides mobile applications with an abstract, integrated view of the user, his 

environment and the physical entities in it, called the Environment Model. Two concrete models 

supply essential data for this view. The User Model stores information useful for personalization (e.g., 

device properties, user characteristics and preferences), and can be updated by the mobile user via 
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the mobile configuration tool. The Spatial Model keeps spatial relations between physical entities 

and the user, based on the spatial information from the Spatial Layer. The Environment Model 

comprises the User Model, Spatial Model, and detected online semantic data sources, thus supplying 

integrated access to the user’s context and surroundings. In order to transparently query the 

detected semantic dataset, consisting of large amounts of small online sources, we utilize the mobile 

query service, which will be detailed in Chapter 4.  

Mobile applications can access the Environment Model in a push- and pull-based way, respectively 

via the Environment Notification Service and Environment Query Service. We presented a short 

summary of mobile applications currently built on top of SCOUT, focusing on how the SCOUT context 

services are employed to realize the mobile applications’ functionality. 



 



 



 

 

Chapter 4  

A Mobile Query Service for 
Online Semantic Data 
Sources 

In the previous chapter, we presented SCOUT as a mobile, client-side context-provisioning 

framework. We detailed its layered architecture and elaborated on each of the layers, describing 

their components, data structures and processes. Based on detection data and spatial info from the 

below layers, the Environment Layer constructs and maintains the Environment Model, which 

comprises the mobile user’s profile and environment context. An essential part of the Environment 

Model constitutes the online semantic dataset, consisting of small online sources associated with 

detected physical entities. In this chapter, we present a novel, general-purpose mobile query service 

utilized by SCOUT to transparently query this online dataset. Due to this general-purpose nature, 

other systems may also act as clients to the query service, in order to gain integrated query access to 

an online dataset comprising small semantic sources. 

First, we motivate the necessity for such a general-purpose query service, targeted towards large 

amounts of small online sources (section 4.1). Subsequently, the chapter discusses the challenges 

and requirements that arise when querying such online semantic data on mobile devices (section 

4.2). We then present an overview of the query service, discussing its components and phases 

(section 4.3). Afterwards, we elaborate on each major component (sections 4.4 and 4.5), and discuss 

configurable support for the Semantic Web’s Open World Assumption (section 4.6). The chapter also 

reviews the core implementation of the query service (section 4.7). Throughout the chapter, we 
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indicate how the identified challenges and requirements are met. Finally, we present a summary of 

this chapter (section 4.8). 

4.1 Motivation 
In order to access online semantic data, many mobile applications currently rely on online query 

endpoints, such as DBPedia Mobile56, mSpace Mobile [65] and MobiSem [12]. Mobile applications 

can send queries to an online query endpoint and directly receive useful results, thus achieving easy 

and efficient query access. Such query endpoints can be set up using technologies such as OpenLink 

Virtuoso57 and Sesame Server58, while local RDF libraries (e.g., Androjena59) exist that provide 

support for accessing online query endpoints. Examples of currently online, freely accessible query 

endpoints are LinkedGeoData60, which is a semantic version of OpenStreetMap, and DBPedia61, 

which keeps Wikipedia information in semantic format.  

Regrettably, the tools and technologies are currently lacking to access other parts of the Semantic 

Web, which are not available behind query endpoints. This includes online RDF files (e.g., FOAF 

profiles) and semantically annotated websites (e.g., using RDFa62). As structured RDF data can be 

directly extracted from many types of semantic annotations (e.g., RDFa, microformats [3]), these 

kinds of websites are online semantic sources in their own right. This Semantic Web segment is far 

from negligible. Sindice63, a Semantic Web search engine, indexes around 708 million online RDF 

files. At the same time, the Web Data Commons64 initiative found that close to 13% of all crawled 

webpages contain semantic annotations. With major search engines (Google, Bing) exploiting 

semantic annotations to improve search results, this amount can be expected to increase.  

Our mobile, client-side query service enables mobile applications to transparently access this 

currently untapped Semantic Web segment, consisting of large amounts of relatively small online 

sources. In doing so, we unlock this online semantic dataset for consumption by mobile clients. 

Below, we elaborate on the challenges and requirements for this mobile query service. 

 

                                                           
56

 http://wiki.dbpedia.org/DBpediaMobile (access date: 24/05/2013) 
57

 http://virtuoso.openlinksw.com/ (access date: 24/05/2013) 
58

 http://www.openrdf.org/doc/sesame/users/ch01.html#d0e98 (access date: 24/05/2013) 
59

 http://code.google.com/p/androjena/ (access date: 24/05/2013)  
60

 http://linkedgeodata.org/ (access date: 24/05/2013) 
61

 http://dbpedia.org/ (access date: 24/05/2013) 
62

 http://www.w3.org/TR/xhtml-rdfa-primer/ (access date: 24/05/2013) 
63

 http://sindice.com/ (access date: 24/05/2013) 
64

 http://webdatacommons.org/2012-02/stats/stats.html (access date: 24/05/2013) 

http://wiki.dbpedia.org/DBpediaMobile
http://virtuoso.openlinksw.com/
http://www.openrdf.org/doc/sesame/users/ch01.html#d0e98
http://code.google.com/p/androjena/
http://linkedgeodata.org/
http://dbpedia.org/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://sindice.com/
http://webdatacommons.org/2012-02/stats/stats.html
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4.2 Challenges and requirements 
Our mobile query service provides transparent, integrated query access to a currently inaccessible 

segment of the Semantic Web, consisting of small online semantic sources. In general, mobile 

applications require access to a specific selection of Semantic Web data. For instance, the SCOUT 

context-provisioning framework (see Chapter 3) needs to access online sources describing the user’s 

surroundings, while recommender systems require semantic descriptions of items to be 

recommended [85]. To accommodate this, our query service enables mobile applications to 

delineate their relevant Semantic Web subset (e.g., as in [15]), as well as dynamically expand this 

subset when new useful information is discovered (e.g., for SCOUT, when new physical entities are 

detected).  

In this particular querying scenario, a number of issues, and corresponding challenges, arise. We 

discuss these below. 

Large query dataset: Even a delineated subset of the Semantic Web is likely to contain a large 

number of sources. However, querying the entire relevant dataset would not be feasible (e.g., the 

entire query dataset should be kept in-memory to enable fast querying). Therefore, a first challenge 

is to reduce the total query dataset, making it feasible for querying. This challenge of reducing the 

amount of query data is also tackled in other related approaches (see Chapter 2, sections 2.2.6 and 0) 

[12, 62, 67, 68]. 

Data captured in online files: We note that query-relevant data items are captured in online sources, 

which need to be fully downloaded and usually contain other (irrelevant) data as well. This makes the 

data-retrieval overhead relatively large. Furthermore, connectivity loss, not uncommon in mobile 

scenarios, results in the online dataset becoming inaccessible. As a result, a second challenge is to 

minimize the number of source downloads, to reduce download times and reliance on connectivity. 

To meet these challenges, two solutions naturally present themselves: 

- Identify relevant online sources: By identifying data relevant to posed queries, the total query 

dataset can be reduced (see first challenge). Moreover, the system only needs to download online 

sources containing query-relevant data, tackling our second challenge. Such identification may occur 

pro-actively (i.e., before any queries have been posed) or re-actively (i.e., after the application posed 

a query). For instance, some approaches pro-actively locate useful Semantic Web data, by correlating 

the information to the user’s context. Afterwards, any posed queries are executed on the pro-

actively selected dataset (see Chapter 2, section 2.2.6) [12, 62]. However, our general-purpose query 

service should not be limited to any type of scenario (e.g., context-awareness). As an alternative, the 

system can automatically identify relevant information per individually posed query (e.g., as in query 

distribution approaches [67, 68]). This re-active approach supports any scenario, as encapsulated by 

application queries (e.g., location-awareness, recommendation). On the other hand, this approach 

requires downloading online sources during query resolution, increasing query resolving times. This 

extra cost can be reduced by applying the second solution, locally cache data. 
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- Locally cache data: By locally caching online data, fewer sources need to be downloaded to serve a 

posed query (see second challenge, minimize source downloads). In doing so, query resolution time 

can thus be reduced (see above). When performing caching, care should be taken not to monopolize 

the volatile and persistent storage of mobile devices. The need for caching data in a mobile setting, 

for instance to cope with connectivity issues, is reflected in related work (see Chapter 2, section 

2.2.9) [73, 76].  

To further meet the presented challenges, any software component realizing these solutions should 

meet two key requirements: 

Fine-grained data identification and retrieval: Query-relevant data should be retrieved at a high level 

of granularity; this means relevant online sources are identified with a high selectivity (see first 

solution, identify relevant online sources), while locally cached, query-relevant data is also retrieved 

in a fine-grained way (see second solution, locally cache data). This way, the query dataset is further 

minimized (see first challenge, reduce the total query dataset); at the same time, ruling out more 

irrelevant online sources also avoids unnecessary downloads (see second challenge, minimizing 

source downloads). 

Reduce memory usage and processing effort: When realizing our challenges and requirements, 

software components should not strain the memory and processing capacity of mobile devices. 

Although these capabilities have increased greatly, there is still a significant gap with larger devices 

(e.g., PC’s, laptops), whereby factors such as battery consumption are currently keeping 

manufacturers from closing the divide. Firstly, a relatively limited amount of volatile memory is 

available (e.g., 64MB on the Android platform), meaning the additional memory required by the 

components (e.g., to store supporting data structures such as B+-trees and hash tables) needs to be 

minimal. Ideally, the data should fit in volatile memory to avoid frequent swapping with persistent 

storage, which unavoidably causes performance loss. Secondly, as mentioned, mobile applications 

are able to dynamically extend their relevant Semantic Web selection as new data is discovered. 

Therefore, software components (i.e., their internal data structures) need to be updateable on-the-

fly, with minimal computational effort, to avoid straining the processing capacity of mobile devices. 

4.3 General approach 
In order to meet the identified challenges, the mobile query service realizes the two proposed 

solutions, namely identifying relevant online sources and locally caching data. Implementing these 

solutions, the Source Index Model (SIM) component identifies query-relevant online sources, while 

the Source Cache and Meta Cache components locally cache downloaded source data. In more detail, 

the SIM performs the identification task by indexing source metadata (i.e., predicates, subject/object 

types) found in online sources. The cache components organize the cached data in a particular way, 

in order to balance the fine-graininess of cached data retrieval with processing and memory effort 

(see requirements). In particular, the Source Cache organizes cached source data according to origin 
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source, while the Meta Cache arranges the cached data based on shared source metadata. We 

developed these two separate cache components to investigate the impact of source metadata on 

data selectivity and memory/computational overhead. For the same purpose, three variants of the 

SIM were developed, each keeping an increased amount of metadata. Below, we discuss the 

rationale behind this focus on source metadata. 

Importantly, source metadata is efficiently obtainable and requires only minimal memory space, 

adhering to req. 2, Reduce memory usage and processing effort. In our related work chapter, we 

discuss the increased overhead of retrieving and storing other kinds of metadata (see Chapter 2, 

section 2.2.8). Nevertheless, this metadata still enables fine-grained data selection, a hypothesis that 

is confirmed by our evaluation (see Chapter 5). As a result, req. 1, Fine-grained data identification 

and retrieval, is fulfilled. Clearly, before such source metadata is usable, it needs to be available in 

both online sources and posed queries. First, we observe that online sources typically specify 

subject/object types to detail their contained RDF resources. This is substantiated by the real-world 

dataset used in our experiments, which was extracted from a variety of existing online sources (see 

Chapter 5, section 5.1.2). At the other end, semantic queries often specify subject and object types to 

restrict triple patterns. These two observations are also reflected by other approaches in the query 

distribution field, which focus on indexing predicates [67, 70] and found types [68] to identify query-

relevant sources.  

Although this focus on source metadata yields a balance between selectivity and overhead, it also 

incurs a drawback related to the Semantic Web’s Open World Assumption (OWA). More specifically, 

the OWA implies that online sources may describe any existing RDF resource. For the mobile query 

service, this means new sources may specify additional types for already processed source data; 

potentially leading to indexed source metadata to become out-of-date. To update components on-

the-fly, a resource-intensive type mediation process needs to be performed. We note that other 

approaches, integrating semantic data from multiple sources, also experience this problem but do 

not consider it [12, 67, 68]. Furthermore, our evaluation (see Chapter 5, section 5.5.2.2) indicates 

that such typing issues occur only very rarely in our collected real-world dataset. Section 4.6 

discusses support for the Semantic Web’s OWA.  

An overview of the query service components and phases can be found in Figure 4-1. To locally query 

RDF(S)/OWL data, the query service utilizes an existing mobile query engine (e.g., Androjena, RDF On 

The Go [28]). Below, we give a detailed overview of the query service phases, and elaborate on how 

components cooperate in each phase. 
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Figure 4-1. Overview of the components and phases of the query service. 

During the Source Encounter phase, the client (i.e., mobile application utilizing the query service) 

passes the location of a newly discovered online source to the query service (a.1), extending its 

particular selection of the Semantic Web. In our evaluation (see Chapter 5), the context-provisioning 

SCOUT framework acts as client, which passes source references describing the user’s physical 

surroundings. After receiving a source reference (a.1), the Source Handler employs the Source 

Downloader to download the source data (a.2). Aside from online RDF files, the Source Downloader 

also supports semantically annotated websites as semantic data sources, by automatically extracting 

their semantic annotations as RDF triples (currently, RDFa-annotated websites are supported). Next, 

the semantic source data is passed to the Source Analyzer (a.3), which extracts the required source 

metadata, including predicates and subject/object types. Optionally, the Source Analyzer employs 

the Ontology Manager component to infer additional source metadata, based on axioms from well-

known ontologies (a.4). The extracted source metadata is then passed to the Source Index Model 

(SIM) (a.5) for indexing, as well as to the cache together with the downloaded source data (a.6).  
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The Data Query phase is triggered when the client poses a query (b.1). Firstly, the Query Handler 

hands the query to the Query Analyzer (b.2). This component analyzes the query and extracts query 

metadata as search constraints, which reflect the extracted source metadata and include concrete 

predicates and subject/object types. The Query Analyzer may also utilize the Ontology Manager, 

leveraging its inferencing support to enrich the search constraints (b.3). The search constraints are 

then passed to the SIM, yielding references to online sources containing relevant data (b.4). 

Afterwards, the cache component is contacted (b.5). Based on the identified source references and 

extracted search constraints, locally cached source data is returned. Subsequently, sources not found 

in the cache, i.e., because the cached source data was previously removed (due to full storage), are 

re-downloaded by the Source Downloader (b.6). An existing mobile query engine (e.g., Androjena) is 

then employed to execute the query on the collected dataset (b.7), after which the query results are 

returned to the client (b.8). Finally, the cache is updated with the re-downloaded source data (b.9).  

In the sections below, we elaborate on the two solutions realized by the mobile query service, 

namely identifying online sources and caching source data, and discuss how the implementing 

components adhere to our requirements (see section 4.2).  

4.4 Identifying online sources 
By indexing newly encountered online sources, relevant sources can be identified at query time. The 

Source Index Model (SIM) performs this indexing and identification step. To comply with our 

requirements (see section 4.2), the SIM is specifically designed to maintain a very compact index, and 

to be quick to update and maintain (see req. 2, Reduce memory usage and processing effort). At the 

same time, the SIM should still guarantee high source selectivity (see req. 1, Fine-grained data 

identification and retrieval). In order to reconcile these two goals, the SIM focuses on indexing source 

metadata (i.e., predicates and their subject/object types).  

Below, we discuss the multi-level index employed by the SIM component, and how it is utilized to 

identify query-relevant sources (section 4.4.1). In the related work chapter (Chapter 2, section 2.2.8), 

we discuss indexing structures employed by other related approaches (e.g., RDF stores and query 

distribution approaches) and compare them to the SIM. Section 4.7.1 elaborates on the core SIM 

implementation. 
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4.4.1 Multi-level index  

 

Figure 4-2. Example of the SIM multi-level index. 

To enable fast identification of query-relevant sources, the SIM employs a multi-level index. Each 

level indexes on a particular metadata part (i.e., predicates, subject/object types), and keeps map 

data structures that connect metadata parts occuring together in source triples. Figure 4-2 shows an 

example multi-level index, keeping source metadata extracted from sources A – F. These sources 

encode location-related information using the FOAF65, space66 and restaurant67 ontologies, and 

contain triples with predicate “foaf:based_near”; subject type “foaf:Person” and/or 

“space:Tube_Station”; and object type “rest:Restaurant” and/or “space:Hotel“. Each found 

combination of metadata parts corresponds to a path through the multi-level index, where the last 

level points to a list of sources in which the combination was found. For instance, in Figure 4-2, the 

metadata combination foaf:based_near – foaf:Person – space:Hotel was extracted from one (or 

more) source triple(s) in source A. 

SELECT ?place 

WHERE { 

    ?person rdf:type foaf:Person . 

    ?person foaf:based_near ?place .  

    ?place rdf:type rest:Restaurant . (1) 

    ?place rdf:type space:Hotel .     (2) 

} 

Code 4-1. Example query, whereby the SIM is employed to identify relevant sources. 

For a given SPARQL query, the SIM identifies relevant sources per individual triple pattern68. This 

enables the query service to resolve queries not solvable by any single source. Each triple pattern in 

                                                           
65

 http://xmlns.com/foaf/0.1/ (access date: 24/05/2013) 
66

 See http://wise.vub.ac.be/ontologies/space.rdf (access date: 24/05/2013) 
67

 See http://wise.vub.ac.be/ontologies/restaurant.owl (access date: 24/05/2013)  
68

 This does not include triple patterns specifying subject/object types; in our solution, these provide type 
constraints for the other triple patterns. 

http://xmlns.com/foaf/0.1/
http://wise.vub.ac.be/ontologies/space.rdf
http://wise.vub.ac.be/ontologies/restaurant.owl
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WHERE, OPTIONAL and UNION clauses are investigated, while FILTER clauses are scanned for 

functions specifying a predicate, subject or object variable type (using sameTerm()). 

In order to illustrate how the SIM performs the identification task, we consider the example multi-

level index discussed above, together with the query triple patterns shown in Code 4-1. The triple 

patterns in italic provide type information for the pattern in bold. When only considering the first 

object type (indicated by (1)), the following query metadata combination (or search constraint) is 

extracted from the triple pattern: foaf:based_near – foaf:Person – rest:Restaurant. The SIM attempts 

to follow the path, indicated by the query metadata combination, through the multi-level index. 

Specifically, given the predicate key in the first index, the SIM returns a second index with subject 

type keys. The final index maps object type keys to lists of source URLs containing the given 

combination of predicate, subject and object type. This search leads to a list of URLs containing the 

given query metadata combination (if any). This process is illustrated in Figure 4-3 (1), where sources 

A, B are returned for our example.  

 

Figure 4-3. Example navigation of the SIM multi-level index. 

In case the subject/object variable of a triple pattern has multiple types, sources need to be 

identified containing all specified subject/object types. Specifically, separate metadata combinations 

are extracted for each type, whereby identified sources should contain each metadata combination. 

For instance, when also considering the second object type in Code 4-1 (indicated by (2)), our 

example gives rise to the following two metadata combinations: foaf:based_near – foaf:Person – 

rest:Restaurant and foaf:based_near – foaf:Person – space:Hotel. Each individual combination is 

followed through the multi-level index, returning sets of sources in which the particular combination 

occurs. This is illustrated in Figure 4-3 (1,2), where our example returns sources A, B. Since we are 

looking for sources comprising both metadata combinations, the intersection of these sets is taken, 

returning source A in our example.  

It should be noted that sources, identified via the above process, do not necessarily comprise single 

triples adhering to all search metadata combinations. Instead, these sources may contain multiple 

triples, each of which adhering to an individual metadata combination. For instance, two source 

triples could exist with subject type foaf:Person and predicate foaf:based_near, whereby the first 
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triple has an object of type rest:Restaurant, and the second triple an object of type space:Hotel. 

However, these source triples do not yield query-relevant data, since their object resource should 

adhere to all related type constraints in the query. As a result, the SIM may identify online sources 

that do not actually contain data relevant to the query; thus conflicting with req. 1, Fine-grained data 

identification and retrieval. On the other hand, resolving this issue would require keeping separate 

sets of metadata combinations occurring in individual triples. This would incur much more memory 

overhead and thus break req. 2, Reduce memory usage and processing effort. 

The SIM also supports online sources comprising triples without subject/object types, as well as 

query triple patterns without concrete predicates or subject/object types. For this purpose, the map 

data structures contain a special <empty> entry. For instance, if an extra source G keeps a triple with 

predicate foaf:based_nearby, subject type foaf:Person, and no object types, the source metadata 

combination foaf:based_nearby – foaf:Person – <empty> would be extracted. Figure 4-4 shows the 

SIM extended with this source triple. The <empty> entry is utilized when query triple patterns have 

missing metadata parts, as elaborated below. 

 

Figure 4-4. The SIM multi-level index extended with an empty entry. 

In case a query triple pattern does not have a concrete predicate, or no subject/object types were 

provided, the SIM will follow all paths starting at the levels standing for the missing metadata. This 

includes the paths starting from concrete entries (e.g., rest:Restaurant, space:Hotel) as well as the 

<empty> entry. This strategy reflects the fact that, as no constraint (i.e., predicate, subject/object 

types) is provided for the particular level, all paths starting at that level will eventually point to 

relevant data sources. After the sources are identified for each path, their union is returned. For 

instance, in case the object types (1) and (2) are left out from the query specified in Code 4-1, the 

query metadata combination foaf:based_nearby – foaf:Person – <empty> is extracted. In Figure 4-5, 

we illustrate how the SIM identifies relevant sources for this query metadata combination. Since no 

object type restrictions were provided, sources are identified for all paths starting at each of the 

level’s entries, namely rest:Restaurant, space:Hotel, and <empty>, yielding the union of A, B and G. 
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Figure 4-5. Example navigation of the SIM multi-level index whereby no object types are given. 

In order to reduce SIM size, we apply dictionary encoding (see section 4.7.1.1). An overview of the 

SIM implementation can be found in section 4.7.1. 

4.5 Caching source data 
By locally caching source data, the number of online source downloads, required to serve posed 

queries, is reduced. To meet our requirement of Fine-grained data identification and retrieval (see 

section 4.2), any cache should identify query-relevant cached data with high selectivity, thus also 

reducing the final query dataset. Secondly, only a small amount of additional data (e.g., indices such 

as B+-trees) should be stored, ideally fitting in volatile memory (currently, 64 Mb on the Android 

platform). Moreover, creating and updating the cache should be quick and efficient. That way, req. 2, 

Reduce memory usage and processing effort, is met. 

In this section, we consider two caching systems: Meta Cache, organizing cached data according to 

shared metadata; and Source Cache, which organizes the cache via origin source. In order to save 

memory and storage space, certain cached data can be moved to persistent storage or removed 

entirely. For this purpose, we present a replacement policy (or removal strategy) called Least-

Popular-Sources (LPS), tailored to our particular setting. Finally, we ensure the freshness of the cache 

by applying a validity strategy.  

Below, we discuss the Meta Cache and Source Cache organizations, and compare them to weigh 

their advantages and drawbacks (section 4.5.1). Note that we also elaborate on other caching 

mechanisms in the related work chapter (Chapter 2, section 2.2.9.1). Then, we discuss useful removal 

strategies and detail the Least-Popular-Sources strategy (section 4.5.2). Other removal strategies, 

specifically developed for mobile scenarios, are also detailed in related work (Chapter 2, section 

2.2.9.2). Section 4.5.3 discusses the cache validity strategy. Finally, an implementation overview is 

given in section 4.7.2. 
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4.5.1 Cache organizations 

Cached data can be organized in different ways, influencing the fine-graininess of data retrieval, as 

well as the cache maintenance cost and in-memory size requirements. Below, we discuss the Source 

Cache organization, and compare it to Meta Cache. 

4.5.1.1 Source Cache 

The Source Cache organizes cached triples via their origin source. This is a natural choice in our 

setting, where data originates from individual online sources. In a caching system, data is indexed, 

stored and retrieved per unit of data (called cache unit), whereby the particular unit depends on the 

cache organization. In case of Source Cache, an individual cache unit contains all data from a certain 

online source. A search index (implemented using a hash table) is kept on cached source URLs, 

whereby each URL uniquely identifies a cache unit. In order to identify the URLs of cached sources 

that are relevant to posed queries, the Source Cache is deployed in combination with the SIM.  

The Source Cache organization leads to only minimal memory overhead, since only one index is kept 

with a relatively small amount of index entries; while the SIM is specially designed to have a low-

memory impact. Updating the cache on-the-fly is fast, since each source is added as a single cache 

unit. As such, Source Cache meets req. 2, Reduce memory usage and processing effort. However, it 

does not support fine-grained data selection, as a retrieved data unit comprises a complete query-

relevant source, instead of only their relevant triples. Therefore, it does not adhere to req. 1, Fine-

grained data identification and retrieval. As shown by our experimental validation, this leads to huge 

overall query resolution overheads. Although such coarse-grained retrieval is unavoidable when 

dealing with online sources (as indicated by our second challenge, Data captured in online files), we 

can improve on the fine-graininess of data retrieval when dealing with local data. 

4.5.1.2 Meta Cache 

Meta Cache organizes source triples according to their shared metadata. In this organization, a cache 

unit contains triples sharing the same metadata combination, i.e., predicate, subject/object types. 

Search indices are kept on predicates, subject and object types; allowing useful cached data to be 

quickly returned, given a particular metadata combination. This organization allows data to be 

obtained in a more fine-grained way, as only triples matching the query’s search constraints (i.e., 

query metadata) are returned. As such, it adheres to req. 1, Fine-grained data identification and 

retrieval. However, this comes with an additional computational and storage overhead, contradicting 

req. 2, Reduce memory usage and processing effort. Firstly, the cache update time is increased, since 

the metadata of each source triple needs to be extracted. Furthermore, caching triples from a new 

source likely requires creating / updating multiple cache units (i.e., all units matching the metadata 

combinations of the source’s triples). Regarding memory space, this organization requires three 

indices with considerable more index entries than Source Cache, since the number of distinct 

predicates and types will likely exceed the number of source URLs. Moreover, each cached triple 
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needs to keep its origin source URL, since a cache unit may group data from multiple sources. For 

instance, this enables checking the validity and freshness of cached data (see section 4.5.3).  

On the other hand, we note that the Meta Cache still has a much lower memory and update 

overhead compared to other indexing approaches (see Chapter 2, section 2.2.8), due to its focus on 

source metadata (i.e., schema-level information). Moreover, our experimental validation shows that 

the computational and memory overhead is still reasonable, especially compared to the resulting 

increase in overall query execution time (see Chapter 5, section 5.3.2). However, another issue 

resulting from the Meta Cache organization is related to cache removal (see next section). 

It should be noted that Meta Cache also keeps information on cached data that was previously 

removed to clear storage space (“missing” data). More specifically, it stores the metadata 

combination associated with the removed data, as well as the locations of the online sources from 

which the data originated. This information on missing data is indexed in the same way as the cached 

data, via the aforementioned search indices. In this way, a cache lookup may return cached data, as 

well as references to online sources to be re-downloaded. This mechanism represents an 

optimization, since it rules out the need for a separate source identification component (i.e., SIM) 

and its accompanying overhead; which is already relatively high for the Meta Cache component. As a 

result, the Meta Cache implements both the online source identification and local caching solutions. 

In case Meta Cache is utilized, the online source identification task (see Figure 4-1/b.4) is thus also 

performed by the cache component.  

4.5.2 Cache removal strategies 

After some time, a caching system can aggregate huge amounts of data. While modern mobile 

devices have increased volatile and persistent storage, users are probably not keen on spending a 

large portion to store cached data. A replacement policy (or removal strategy) identifies data be 

moved to persistent storage or removed entirely. To achieve this, removal strategies typically 

identify data not likely to be referenced in the future, by assuming a particular locality of reference. 

For instance, temporal locality indicates that items that have been recently referenced will likely be 

referenced again, and is employed by the Least-Recently-Used policy (LRU). As mentioned in related 

work (see Chapter 2, section 2.2.9.2), much work has been done concerning removal strategies 

meant for location-aware scenarios. However, since our mobile query service does not target one 

particular type of client application, we focus on general-purpose removal strategies re-usable across 

different application scenarios.  

Below, we discuss “regular” strategies such as Least-Recently-Used and Furthest-Away-Replacement 

(FAR) [76], and how they can pose problems in Meta Cache. Then, we introduce the Least-Popular-

Sources removal strategy, which is fine-tuned to our particular querying scenario. 
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4.5.2.1 Regular removal strategies 

The Least-Recently-Used (LRU) replacement policy assumes temporal locality, identifying cache units 

least recently referenced by the client application to be stored persistently or removed. The FAR [76] 

replacement policy assumes a certain semantic locality (i.e., based on general properties and 

relations of data [73]). More specifically, it assumes that cached data, associated with a nearby 

location in the user’s current movement direction, will likely be required in the future. In general, the 

suitability of a particular removal strategy thus depends on the observed locality of reference 

exhibited by cache access. For instance, in location-aware scenarios, client applications will 

frequently access location-related data (FAR); in more general scenarios, applications may often 

access recently referenced data (LRU). 

For Source Cache, regular strategies (e.g., LRU) perform as expected. However, we found that such 

removal strategies can cause major problems for Meta Cache, because of the particular cache 

organization [86]. In Meta Cache, a stored cache unit contains triples likely originating from multiple 

sources. This means that, whenever a cache unit is removed and later referenced during query 

resolution (i.e., cache miss), all sources containing the associated metadata need to be re-

downloaded. As a result, query execution overhead becomes exceedingly high in case of cache 

misses. We note that this issue results from our particular setting, where data is captured in online 

files that need to be fully downloaded (see second challenge in section 4.2, Data captured in online 

files). Experimental results, both in our experimental validation (see Chapter 5) and a previous 

evaluation [86], show that removal strategies not considering this issue may cause a huge download 

overhead during the Data Query phase.  

Below, we present a removal strategy that takes this issue into account. 

4.5.2.2 Least-Popular-Sources (LPS) 

In this section, we present a removal strategy called Least-Popular-Sources (LPS), a so-called source-

based removal strategy we tailored to our setting where data is captured in online files. In Figure 4-6, 

LPS is applied on a cache where data from sources A, B and C are spread across multiple cache units.  
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Figure 4-6. An example application of LPS (Least-Popular-Sources). 

Importantly, the source-based LPS strategy identifies origin sources (e.g., source A) to be removed, 

instead of cache units (e.g., cache-unit x). By removing data on a per-source level, a cache miss 

resulting from a single removal only triggers a single source download, instead of a multitude of 

downloads. This is illustrated in Figure 4-6. After source A has been removed, the referencing of 

cache unit x only results in one source download, instead of three69. As such, this strategy aims to 

avoid the aforementioned issue with multiple downloads (see section 4.5.2.1), and thus increase 

adherence to our second challenge of minimizing source downloads (see section 4.2). A drawback is 

that the probability of a cache miss (i.e., accessing a cache unit with missing data) increases as well, 

since one removal may influence multiple cache units (e.g., units x, y and z in Figure 4-6). Also, a 

single removal becomes more complex, since multiple cache units need to be updated. In our 

evaluation, we investigate how the incurred overheads weigh against the overall increase in 

efficiency. While this dissertation considers the application of LPS to Meta Cache, we note that LPS 

may be applied to any cache where the data originates from online sources and is not internally 

organized via origin source.  

In order to reduce query-time overheads, LPS considers the “popularity” of the source in the cache, 

which is reflected by 1/ the popularity of its source data, i.e., the number of stored cache units 

containing the data, and 2/ the popularity of its own metadata, i.e., how often the contained 

metadata is found in other sources. By considering factor 1, we reduce the impact of removing the 

source (since less cache units are influenced), thus decreasing the probability of a cache miss. For 

instance, removing source C (see Figure 4-6) has a relatively low impact on the cache (as only one 

cache unit is affected), reducing the probability of a cache miss later on. As such, this factor mediates 

the increased likelihood of cache misses when utilizing a source-based removal strategy.  
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 Note that this is a simplified example; in a real-world setting, a cache unit will typically contain data from 
many more sources. 
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During experiments however, we observed that while factor 1 indeed reduces cache misses, it also 

increases the overall amount of source re-downloads; i.e., the amount of sources that needs to be 

downloaded in response to a cache miss. In Figure 4-7, we illustrate a situation where only factor 1 is 

considered. 

 

Figure 4-7. Example application of LPS when only considering factor 1. 

Small cached sources typically contain less distinct metadata combinations, reducing their value for 

factor 1. For instance, the relatively small sources C, D and E are only involved in one cache unit (i.e., 

cache unit x), reducing their value for factor 1 and thus making them candidates for removal. In 

addition, we note that an increased amount of small sources need to be removed to clear the same 

amount of memory space. As illustrated in Figure 4-7, this leads to a cache composition with a 

comparably large number of removed sources for cache unit x; which increases the potential number 

of source re-downloads per cache miss. For instance, in case cache unit x is referenced, three sources 

need to be downloaded instead of just one.  

Factor 2 indicates the popularity of the comprised metadata in the online semantic dataset, 

delineated by the mobile application. Importantly, the second factor helps to keep the number of 

source re-downloads per cache miss in check. As the number of associated sources increases for a 

certain metadata combination, the second factor’s value becomes higher for these associated 

sources, as they contain increasingly “popular” source metadata. Therefore, it becomes less likely 

that many of these associated sources will be removed. For instance, sources C, D and E have an 

increased value for factor 2, since cache unit x involves a relatively large number of sources (5), 

making the associated metadata combination popular. As such, the likelihood that many of them are 

removed is decreased. In this respect, the second factor serves as a counter-weight to the first factor, 

allowing for a balance between cache misses and source re-downloads. This is confirmed by our 

experimental validation (see Chapter 5, section 5.4). As an additional advantage, it could be assumed 

that the more popular a particular combination of metadata, the more likely it will be referenced by 
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a query fired by the mobile application. As such, sources containing these kinds of popular metadata 

combinations should not be removed from the cache. 

As a final consideration, LPS can also take into account the source download cost, which leads to 

sources that are expensive to download (i.e., have long download times) being less likely to be 

removed. Different weights may be set for each of the three factors, to accommodate different 

scenarios (e.g., particular data distributions that make factor 1 or 2 more suitable). Below, we show 

the formula for calculating the removal value for source s, where f1 stands for source data 

popularity, f2 for source metadata popularity, and f3 for download cost; and α, β and γ represent the 

respective factor weights: 

   ( )              

4.5.3 Cache validity 

Various invalidation strategies exist to detect invalid, no longer up-to-date information in client-

server architectures and mobile scenarios. For instance, a cache invalidation strategy called Selective 

Adaptive Sorted (SAS) is presented in [87], where updates on data items on the server are reflected 

on the mobile device. In [88, 89], location-dependent cache invalidation approaches are presented, 

which ensure validity of location-specific cached data, retrieved from information services. However, 

these strategies are not suitable in our setting, where cached data originates from online files stored 

on general-purpose web servers instead of dedicated servers. Therefore, we rely on the cache 

support of HTTP (typically also used by proxy caches). 

To support validity management, we keep information on each retrieved source, potentially 

including last download time and expiration time (e.g., indicated via the “Expires” header field). After 

a predefined amount of time, a process checks the validity of each source. Importantly, by leveraging 

HTTP caching support, validity checks can be performed without having to download all the source 

data and checking for changes (e.g., via checksum comparison). In particular, either the server-

specified expiration time is checked; or a conditional GET request is sent, whereby the last download 

time is filled into the “Last-Modified-Since” header field. In case this conditional request returns 

(updated) source data, or the expiration time has been exceeded, the outdated source triples are 

removed from the cache and replaced by the new source data. 

4.6 Semantic Web Open World Assumption 
The vision of the Semantic Web is that of an open, interlinked web of semantic data, where data 

providers publish information on any person, place, or thing identifiable by a resource URI. To 

support this vision, Semantic Web technologies implement the Open World Assumption (OWA). In 

contrast to the Closed World Assumption (CWA), the OWA states that the absence of a statement 

does not imply its negation. In essence, this means no single data source is assumed to be 

comprehensive, and any other data source can extend existing resource descriptions. Additionally, 
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the OWA allows dealing with new RDF descriptions in a flexible way, via logical axioms that enable 

inferring new statements. Below, we discuss the OWA support provided by the mobile query service. 

In the Semantic Web, RDF resources may be described by multiple online sources. For instance, a 

person’s FOAF profile can list people the person knows, who are likely described in more detail in 

their own FOAF profiles. Each data source may hereby specify additional information for these 

resources (e.g., extra person details), including new resource types (e.g., foaf:Person). For the mobile 

query service, this means newly encountered sources may specify extra types for already processed 

source data; possibly leading to indexed source metadata to become outdated. In order to keep the 

query service metadata up-to-date, resource types should be tracked across sources; whereby 

component data structures are updated70 when necessary. We call this updating process type 

mediation. In case multiple online sources specify different types for identical RDF resources, type 

mediation needs to be enabled to guarantee that all relevant query results are returned. In case the 

same resource types are specified across online sources, the process may be disabled to reduce 

overhead; for instance, typing issues occurred very rarely in our real-world experiment dataset (see 

Chapter 5, section 5.5.2.2). We also note that other approaches, which integrate Semantic Web data 

from multiple sources, suffer this problem but do not consider it in their work [12, 67, 68].  

Secondly, ontologies can be defined using the Web Ontology Language (OWL), containing logical 

axioms that place restrictions on RDF models. For instance, an ontology may contain a property 

domain restriction, which constrains the types of related subject resources; e.g., the domain 

restriction of the foaf:familyName property implies the type of subject resources is foaf:Person 

(reflecting the fact only people have a family name). Importantly, any RDF model not stating any 

types (or different types) for these subject resources is still considered valid. Typically, such RDF 

models do not explicitly state the constrained type is not applicable; and since the absence of type 

statements does not imply their negation, it can also not be assumed the type is not applicable. Such 

cases essentially imply a state of affairs where the domain restriction holds [90]. Therefore, Semantic 

Web reasoners use these kinds of axioms to infer new type statements (e.g., foaf:Person in the 

previous example), and make them explicit in the original RDF data. Likewise, the query service 

exploits these property domain and range restrictions to infer new resource types, using the inferred 

types to enrich extracted source and query metadata. This process is called type inferencing. Most 

RDF stores support type inferencing (e.g., Androjena), and typically allow enabling/disabling 

inferencing to suit application needs and improve performance. Analogously, the query service 

allows disabling type inferencing. 

Below, we elaborate on type inferencing and type mediation, and discuss how they impact the query 

service and its components. 
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 Only components utilizing source metadata, i.e., the SIM and Meta Cache, need to be updated. 
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4.6.1 Type inferencing 

As explained, the Semantic Web’s Open-World Assumption (OWA) allows the inferencing of new 

type information based on logical axioms specified in OWL ontologies. With regards to our query 

service, type inferencing may be applied during the Source Encounter phase, in order to enrich 

extracted source metadata; and on posed queries during the Data Query phase, to extend extracted 

search constraints. Below, we elaborate on how the two phases are extended to support type 

inferencing. 

The Source Encounter phase (see Figure 4-1) is extended with the Ontology Manager component, 

which provides inferencing support based on axioms from online ontologies. Via the Ontology 

Manager, the Source Analyzer component retrieves each predicate’s domain/range types (possibly 

including their subtypes), and adds them to the extracted source metadata. By making more source 

metadata available, search constraints can identify increased amounts of query-relevant semantic 

data.  

For instance, consider the following small RDF snippet in Code 4-2 (namespaces omitted for brevity): 

vub:denker_in_alle_staten rdfs:label “Denker in alle staten” . 

vub:denker_in_alle_staten geo:xyCoordinates  

“50.82242202758789,4.393936634063721” . 

Code 4-2. Example RDF snippet illustrating type inferencing at the source side. 

In this case, the Source Analyzer obtains the domain type restriction of the geo:xyCoordinates 

predicate (specified in the GeoFeatures71 ontology) via the Ontology Manager, namely 

geo:SpatialEntity. In case a query was invoked, requesting for instance labels of all encountered 

resources of type geo:SpatialEntity, the vub:denker_in_alle_staten resource would be correctly 

returned as a result.  

During the Data Query phase, the Query Analyzer component, responsible for extracting search 

constraints from posed queries, leverages the same ontological knowledge to enhance the search 

constraints. Utilizing the Ontology Manager’s inferencing support, the Query Analyzer obtains each 

concrete predicate’s domain and range types (possibly accompanied by their subtypes) and adds 

them to the search constraints. This way, data identification becomes more selective, ruling out 

more irrelevant source data.  

For instance, consider a query containing the following two triple patterns (Code 4-3) (namespaces 

omitted for brevity): 

 ?restaurant lgd:cuisine ?cuisine . 

 ?restaurant rdfs:label ?label . 

Code 4-3. Example query to illustrate type inferencing at the query side. 
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 http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl# (access date: 03/04/2013) 

http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl
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Here, the Query Analyzer obtains the domain type restriction of the lgd:cuisine predicate (as 

specified in the LGD72 ontology) from the Ontology Manager, namely lgd:Restaurant. As query-

relevant sources are identified per triple pattern, such inferred types can greatly improve data 

selectivity. For instance, since no type constraints are given and rdfs:label is a much-occurring 

predicate, a great deal of source data will be identified for the second triple pattern. However, since 

both triple patterns share the same subject variable (i.e., ?restaurant), the inferred lgd:Restaurant 

can also be added to the second search constraint, making it much more selective.  

We note that, during query resolving, type inferencing needs to be re-applied to retrieved online 

sources, which were for instance downloaded due to a cache miss. Although the Source Analyzer 

previously enriched the source metadata with inferred types, the online sources cannot be updated 

with the newly inferred types. This is a direct result from our specific setting, where data is captured 

in online files not under our control (see second challenge, Data captured in online files; section 4.2). 

The Ontology Manager component dynamically downloads ontologies when required, by checking 

the namespaces of passed terms (e.g., predicates, in case domain/range types are requested) and 

resolving them to their online locations. For this purpose, the Ontology Manager is initialized with a 

configuration file, which connects the namespaces of well-known ontologies to concrete URLs where 

the ontology may be found (together with its format; e.g., RDF/XML). If a particular namespace URI is 

not found in the configuration file, an attempt is made to resolve the namespace URI itself to an 

online location. After downloading an ontology, the Ontology Manager stores it locally for later use. 

To reduce memory usage, retrieved ontologies are cleared from memory after analyzing a source or 

query. 

4.6.2 Type mediation 

In the Semantic Web, data sources may reference RDF resources already described elsewhere. In 

order for the same resource to be easily identified across different sources, an important Linked Data 

guideline is to re-use the same URI for identical resources, and using constructs (e.g., owl:sameAs) to 

indicate resource equivalence [91].  

In case resources occur across multiple online sources, whereby sources may specify different types 

for these resources, the type mediation process needs to be applied. This process requires keeping 

track of resource types across encountered sources, and updates components to reflect new types 

for already processed source data. In case type mediation is not applied, some query-relevant 

resources would not be returned in response to posed queries. The type mediation process is 

resource-intensive regarding memory and processing effort, since it requires keeping types for each 

individual resource, and updating component data structures when necessary. As such, it contradicts 

req. 2, Reduce memory usage and processing effort. On the other hand, our index structure keeping 
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resource types (among other information) still consumes less memory space than the ones used by 

for instance RDF stores (see section 4.7.3). 

In case such typing issues do not occur in the online semantic dataset (i.e., no sources exist where 

the same RDF resources are typed differently), type mediation can be disabled. For instance, this is 

the case for scenarios where there is complete control over the contents of online sources, and the 

sources can be supplemented with the missing resource types. In other cases, knowledge on the 

online dataset can be utilized to rule out the existence of typing issues. For instance, the real-world 

dataset used in our experimental validation (see Chapter 5, section 5.1.2) comprises FOAF profiles, 

where a person’s profile typically lists RDF resources standing for other persons (e.g., acquaintances 

indicated via foaf:knows); each of which are described in more detail in their own FOAF profile, 

including additional types (e.g., foaf:Person). In case type mediation was not enabled, the 

experiment query referencing these FOAF profiles would return less query-relevant results. On the 

other hand, in this experimental dataset, only a very limited number of typing issues occurred, 

compared to the total dataset size (see Chapter 5, section 5.5.2.2). In cases where the amount of 

typing issues is negligible, or do not occur at all, type mediation can be disabled to reduce overhead. 

We note that other approaches integrating Semantic Web data also suffer from this problem, but do 

not make an effort to tackle it. Consequently, the current state of the art corresponds to the case 

where type mediation is disabled in the mobile query service. For instance, the SemWIQ [68] query 

distribution approach keeps a catalog for each data source, listing the classes and their number of 

instances. However, other data sources may specify additional types for the contained RDF 

resources, resulting in an incomplete catalog. The DARQ [67] query distribution system keeps so-

called service descriptions for each data source, including constraints on subject and object 

resources. In case other data sources specify extra types for contained resources, these types should 

also occur in the subject and object constraints. MobiSem [12] replicates RDF data on the local device 

from multiple online sources, depending on the user’s context. However, the online sources may 

supply different types for the same RDF resources, possibly resulting in less results being returned 

when querying each dataset separately. 

An overview of the realization of the type mediation process, including the supporting 

implementation and process logic, can be found in section 4.7.3.  

4.7 Implementation 
In this section, we summarize the core implementation of the two major query service components, 

namely the Source Index Model (section 4.7.1) and Meta Cache (section 4.7.2). Also, we review the 

implementation of the OWA type mediation process (section 4.7.3). The implementation sections 

include UML diagrams showing the core classes73.  
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4.7.1 Source Index Model 

Figure 4-8 shows the SIMStrategy package. A SIMStrategy instance represents a SIM component, and 

keeps references to QueryAnalyzer, SIMSourceAnalyzer and SourceIndexModel instances, as well as 

a SourceDownloader object. Below, we correlate the package structure to the components and 

phases illustrated in the overview figure (see Figure 4-1). Note that we only consider individual use of 

the SIM here74. For an overview of the cache package, where the SIM is utilized in combination with a 

cache component, we refer to section 4.7.2. The OntologyManager, which is used to perform type 

inferencing, is not elaborated here and is discussed in section 4.6.1.  

 

Figure 4-8. Query Service - SIM: SIMStrategy package. 

During the Source Encounter phase, the SIMStrategy assumes the role of Source Handler. The 

SIMStrategy is contacted to index new sources (see Figure 4-1/a.1) by invoking its addToSIM method 

(see Figure 4-8). Firstly, the SIMStrategy employs the SourceDownloader class to download the 

online semantic source (see Figure 4-1/a.2), which returns an RdfSource encapsulating the 

downloaded RDF graph. The SourceDownloader automatically detects the type of the online 

semantic source: in case of an RDF file, the contained RDF triples are simply downloaded; in case of a 
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 In our experimental validation (see chapter 5), we evaluate a setup where only the SIM component is 
utilized, to investigate the utility of keeping an extra local cache. 
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website, the component attempts to extract its RDFa annotations as RDF triples, using an Android-

ported version of java-rdfa75. Afterwards, the SIMSourceAnalyzer, fulfilling the role of Source 

Analyzer, extracts the required source metadata from the downloaded source (see Figure 4-1/a.3). 

Finally, the SIMStrategy passes the source metadata on to the SourceIndexModel instance for 

indexing (see Figure 4-1/a.5).  

In the Data Query phase, the SIMStrategy acts as the Query Handler. In this case, the SIMStrategy to 

contacted (see Figure 4-1/b.1) by invoking its executeQuery method (see Figure 4-8). To extract 

search constraints from the posed query (see Figure 4-1/b.2), SIMStrategy relies on the 

QueryAnalyzer class, acting as the Query Analyzer component. The SIMStrategy then contacts the 

SourceIndexModel instance with the extracted search constraints, obtaining a list of query-relevant 

source URLs (see Figure 4-1/b.4). Afterwards, the SIMStrategy employs the aforementioned 

SourceDownloader to download each identified source (see Figure 4-1/b.6). Finally, SIMStrategy 

relies on an existing mobile query engine to execute the query on the collected source data (see 

Figure 4-1/b.7). After invoking the executeQuery method, the results are returned to the query 

service (see Figure 4-1/b.8). 

To locally query and work with RDF data, the query service utilizes a custom RDF library (not shown 

in detail), containing an abstract RdfGraph class that can be subclassed to support any Android RDF 

library. Currently, we provide support for Androjena76, which is a ported version of the well-known 

Apache Jena framework77. We extended this library with support for efficiently combining RDF 

graphs, which significantly optimized the collection of identified sources into a single dataset during 

querying (see above).   

The SIMStrategy subclasses represent different SIM variants. In our evaluation (see Chapter 5), we 

compare three SIM variants that keep varying amounts of metadata, with the goal of evaluating 

memory overhead and performance. The first variant keeps only predicates (SIMStrategy_Pred, 

where Pred stands for Predicate); the second variant keeps predicates and subject types 

(SIMStrategy_PredDom, where Dom stands for domain); and the third variant keeps predicates and 

subject/object types (SIMStrategy_PredDomRan, where Ran stands for Range). SIMStrategyNone is 

utilized in case the query service does not employ the SIM (e.g., when the Meta Cache is employed; 

see section 4.5). 

Below, we first discuss wrapper classes encapsulate information in the query service, enabling 

dictionary encoding. Then, we elaborate on implementing packages of the major SIM components. 

4.7.1.1 Dictionary encoding 

In order to reduce memory consumption on resource-restricted devices, the query service performs 

dictionary encoding, both in the SIM and Meta Cache (see section 4.7.2). Dictionary encoding is also 
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 https://code.google.com/p/androjena/ (access date: 15/05/2013) 
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applied by existing RDF stores to reduce memory usage [71, 72]. Each piece of stored data (e.g., 

URLs, metadata parts) is wrapped in an abstract class, whereby one of the subclasses performs 

dictionary encoding. For instance, the TripleMetadataPart class represents a metadata part (i.e., type 

or predicate, extracted from an online source or query), whereby the DictEncTriplePart subclass 

keeps a dictionary-encoded version of the term URI. Figure 4-9 shows TripleMetadataPart, together 

with its subclasses and related abstract factory classes. 

 

Figure 4-9. Query Service: TripleMetadataPart package 

The DictionaryEncoder class (not shown) is responsible for performing dictionary encoding. For 

instance, RDF terms (i.e., predicates, types and  resources) are encoded by mapping their namespace 

to an integer identifier, and keeping the local part as a character array. We found that this resulted in 

the largest reduction in memory usage, as namespaces are repeated across data sources much more 

often.  

4.7.1.2 SIMSourceAnalyzer 

The SIMSourceAnalyzer is responsible for extracting the required source metadata from a 

downloaded RDF source. We show the SIMSourceAnalyzer package in Figure 4-10.  
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Figure 4-10. Query Service - SIM: SIMSourceAnalyzer package. 

The SIMSourceAnalyzer class is contacted (see extractSIMData method) to extract source metadata 

from a given RdfGraph. The metadata is returned as a set of SourceTripleMetadata instances (class 

not shown), each of which aggregates metadata (i.e., predicates, subjects and object types) for an 

individual source triple. As such, these objects collectively present the extracted source metadata. A 

SIMSourceAnalyzer subclass retrieves source metadata for one of the three SIM variants (see Figure 

4-8). The SIMSourceAnalyzer class itself is a subclass of the SourceAnalyzer class, which allows its 

subclasses to retrieve a map from resources to their types found in an RDF graph. This superclass is 

also used by the Meta Cache (see section 4.7.2.2).  

Initially, the necessary source metadata was retrieved by executing predefined SPARQL extraction 

queries on the source RDF graph [86, 92]. However, when dealing with relatively large sources with 

substantial amounts of type information, this led to significant processing overhead on mobile 

devices (ca. 31s for 3,5Mb of source data). To resolve this issue, we extended our RDF library 

(diagram not shown) with an abstract RdfStatementIterator class, which enables client code to 

efficiently iterate over individual RDF statements. Its NTripleStatementIterator subclass dynamically 

parses RDF files in N-Triple format, extracting new RDF statements as they are requested via the 

iterator interface. By relying on this subclass to extract source metadata, we managed to speed up 

the extraction process by a factor 10 on average. RdfStatementIterator subclasses for other RDF 

formats (e.g., N3) can be easily plugged in later on. 

To perform type inferencing, SourceAnalyzer utilizes the OntologyManager class (see section 4.6.1).  
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4.7.1.3 QueryAnalyzer 

The QueryAnalyzer is utilized by both the SIM and Meta Cache (see section 4.7.2) to extract search 

constraints from queries. Figure 4-11 shows the QueryAnalyzer package.  

 

Figure 4-11. Query Service: QueryAnalyzer package. 

The QueryAnalyzer extracts query predicates (see constructPredicateSet method); predicates and 

subject types (constructPredicateDomainSet method); and predicates and subject/object types 

(constructPredicateDomainRangeSet method), thus accommodating each of the three SIM variants 

we studied. These methods return a list of TripleConstraintMetadata objects, each of which 
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encapsulates metadata extracted from an individual query triple pattern (cfr. SourceTripleMetadata; 

see section 4.7.1.2). Together, these objects thus represent the extracted search constraints. The 

SparqlQueryAnalyzer subclass implements support for SPARQL queries and utilizes one or more 

QueryVisitors (not all visit methods shown), which realize the Visitor design pattern. For instance, 

SparqlQueryAnalyzer employs the SubjectPredicateQueryVisitor to extract the concrete predicate 

and subject URI term from each triple pattern, and the ResourceTypeVisitor to retrieve a mapping 

from URI terms to their specified types. In order to perform type inferencing, the 

ResourceTypeVisitor relies on the OntologyManager class (see section 4.6.1). We utilize the SPARQL 

Parser library78 to parse SPARQL queries and subsequently visit the parsed Abstract Syntax Tree 

(AST). 

4.7.1.4 SourceIndexModel 

The SourceIndexModel class indexes source metadata and identifies query-relevant sources. The 

SourceIndexModel package is shown in Figure 4-12.  
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Figure 4-12. Query Service - SIM: SourceIndexModel package. 

After the QueryAnalyzer has extracted the search constraints (see Figure 4-11), SIMStrategy passes 

them on to the SourceIndexModel in the form of TripleConstraintMetadata objects (see getSources 

method), after which a list of query-relevant SourceURLs is returned. The SIMMap subclass 

represents the multi-level index solution discussed in section 4.4.1. A generic version of this multi-

level index is implemented by the CascadeIDMap class. Its RestrictionsValuesMap subclass realizes 

behavior specific for the SIM, such as performing an intersection of the results in case search 

constraints specify multiple subject/object types (see section 4.4.1). The RestrictionsSourcesMap is a 

subclass of RestrictionsValuesMap, and provides an interface for keeping SourceURLs as payload in 
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the multi-level index. The SIMMap class relies on the RestrictionsSourcesMap class to act as multi-

level index. Finally, SIMMap has three subclasses, to support the three different SIM variants. 

4.7.2 Cache 

Figure 4-13 shows the CacheStrategy package. A CacheStrategy instance represents a cache 

component, keeping references to QueryAnalyzer, CacheSourceAnalyzer and SourceDownloader, as 

well as CacheManager and (potentially) SIMStrategy. The CacheManager further keeps a reference to 

CacheStore and RemovalStrategy instances. Below, we correlate the package structure to the phases 

and components from the overview figure (see Figure 4-1). The OntologyManager is discussed in 

section 4.6.1. 
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Figure 4-13. Query Service - Cache: CacheStrategy package. 

In the Source Encounter phase, the CacheStrategy acts as Source Handler. In case of a newly 

encountered source, the CacheStrategy is contacted (see Figure 4-1/a.1) by calling its newSource 

method (see Figure 4-13). First, the SourceDownloader is employed to download the online source 

(see Figure 4-1/a.2), returning an RdfSource wrapping the downloaded RDF graph. As mentioned (see 

section 4.7.1), the SourceDownloader supports both online RDF files as well as RDFa-annotated 

websites. Afterwards, the CacheSourceAnalyzer, representing the Source Analyzer component, is 

contacted, returning the source data accompanied by their associated metadata (see Figure 4-1/a3). 

In case the chosen cache type requires a SIM component (i.e., Source Cache), the extracted source 

metadata is first communicated towards the SIMStrategy instance for indexing (see extra addToSIM 
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method). Then, the downloaded source data, together with its associated metadata, is passed to the 

CacheManager for local caching (see add method). The CacheManager utilizes a CacheStore instance 

for actual data storage, and relies on a RemovalStrategy object to manage memory and persistent 

storage space.  

During the Data Query phase, the CacheStrategy takes up the role of Query Handler. In order to 

retrieve query-relevant data, the CacheStrategy is contacted (see Figure 4-1/b.1) by calling its 

executeQuery method79 (see Figure 4-13). The CacheStrategy first contacts the QueryAnalyzer to 

extract search constraints from the posed query (see Figure 4-1/b.2). Then, two scenarios may ensue; 

one where the cache component relies on a SIM (i.e., Source Cache) and one where the cache 

component is standalone (i.e., Meta Cache). In the first case, the CacheStrategy communicates the 

search constraints to the SIM, with the goal of identifying query-relevant sources (see Figure 4-1/4). 

Then, the CacheStrategy contacts the CacheManager, to retrieve the identified cached sources and 

determine which sources need to be re-downloaded (see Figure 4-1/b.5). Each non-cached source is 

then downloaded using the SourceDownloader object (see Figure 4-1/b.6). In the second case, the 

CacheStrategy directly passes on the search constraints to the CacheManager, which returns query-

relevant cached data as well as missing online source locations to be re-downloaded (see Figure 

4-1/b.5). Each missing source is then downloaded using the SourceDownloader (see Figure 4-1/b.6).  

To execute the query on the collected data (see Figure 4-1/b.7), the CacheStrategy employs an 

existing query engine, encapsulated by the abstract RdfGraph class (not shown here). Currently, we 

support the Androjena query engine. After executing the executeQuery method, the query results 

are returned to the mobile application (see Figure 4-1/b.8). Finally, the re-downloaded source data is 

communicated to the CacheManager for local caching (see Figure 4-1/b.9). The SourceUpdater class 

implements our cache validity strategy (see section 4.5.3), and runs in the background to keep the 

cache up-to-date with the online origin sources. 

The QueryAnalyzer class is elaborated in section 4.7.1.3. Below, we discuss how the cached data is 

identified and represented, respectively via CacheKey and CacheElement classes (section 4.7.2.1). 

Afterwards, section 4.7.2.2 discusses the CacheSourceAnalyzer class. We elaborate on the 

CacheManager in section 4.7.2.3, while the CacheStore and RemovalStrategy classes, employed by 

the CacheManager class, are elaborated in sections 4.7.2.4 - 4.7.2.6 and 4.7.2.7 - 4.7.2.10, 

respectively. Finally, section 4.7.2.11 elaborates on how cached data is stored persistently, via the 

PersistentStorage class. 

4.7.2.1 CacheKey and CacheElement 

In this section, we discuss the representation and identification of cached data. Figure 4-14 shows 

the related class diagram. Below, we elaborate on the main classes. 

                                                           
79

 The getData method returns the query-relevant set of source data; e.g., this allows the SCOUT framework to 
add this query-relevant data to the final query dataset (chapter 3, section 3.4.3). 
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Figure 4-14. Query Service - Cache: CacheKey and CacheElement classes. 

To increase flexibility, our cache explicitly separates the units of storage, retrieval and removal. 

Below, we discuss these different units and their implementing classes. 

Firstly, the unit of storage is represented by the CacheUnit class, which stores the data actually being 

cached (called the payload) either in-memory or persistently. In Source Cache, the CacheRdfGraph 
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subclass keeps an RDF graph containing all RDF data from a particular source; in Meta Cache, the 

CacheTripleSet subclass collects all RDF triples sharing the same metadata.  

The CacheElement class stands for the unit of retrieval, meaning a cache store retrieves a 

CacheElement instance in response to a lookup. The CacheKey class is responsible for uniquely 

identifying CacheElement objects in the cache. For Meta Cache, a MetaCacheKey object stands for a 

particular metadata combination, and identifies a CacheTripleSet containing RDF triples adhering to 

the metadata. For Source Cache, a SourceCacheKey instance identifies a CacheRdfGraph object 

containing data from a particular origin source.  

Finally, the RemovalElement class serves as the unit of removal. In case memory is full, the memory 

management process (see section 4.7.2.3) stores RemovalElement objects persistently or removes 

them entirely. The RemovalElement interface supports such memory management operations; e.g., 

via methods to move data to persistent storage (moveToPersist method) and removing the data 

(remove method).  

The flexibility brought by this separation is required by some setups (i.e., when using certain removal 

strategies); see section 4.7.2.10 for an example. For most cases however, it is not necessary to 

differentiate between these units. To facilitate such cases, the CacheUnit class can act as unit of 

storage, retrieval and removal at the same time, as it is a subclass of CacheElement and implements 

the RemovalElement interface. The CompositeCacheElement class, subclass of CacheElement, 

aggregates multiple CacheUnits and also serves as unit of retrieval (see section 4.7.2.10). 

As the type of payload depends on the particular cache (e.g., RDF graph vs. set of RDF triples; see 

below), CacheUnit subclasses define separate methods for returning their payload (e.g., see 

getGraph and getTriplesIterator methods). In case the CacheUnit had been stored persistently, 

requesting its payload results in automatically loading the unit back into memory (see 

moveToMemory method). To fulfill its responsibilities as a removal unit, the CacheUnit class 

implements various memory management methods (e.g., moveToPersist, remove methods) and 

delegates other tasks to its subclasses (e.g., serializeData method). Subclasses may also override 

these implemented methods (e.g., moveToPersist method) for optimization reasons.  

Meta Cache relies on the CacheTripleSet subclass, which stores an arbitrary set of RDF triples. These 

triples are represented by CacheTriple instances, which additionally keep the triple’s origin source 

URL (therefore, they actually stand for quads). The YARS RDF store [71] notes that storing 

provenance is one of the fundamental necessities in the open, distributed Web environments. The 

CacheRdfGraph subclass keeps an RDF graph as payload, and is employed by Source Cache. It should 

be noted that, by letting the CacheTripleSet class keep cached triples individually, we avoid keeping 

separate RDF graphs for each metadata combination. This would incur a large memory overhead, 

since there are typically many more metadata combinations than origin sources, and Androjena 

graphs keep their own internal indices to speed up query access (increasing memory overhead). 

Furthermore, this enables dictionary encoding to be applied to reduce the memory footprint, while 

the individual triples can also be easily moved between different units (e.g., necessary in case of type 
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mediation; see section 4.7.3.3). On the other hand, Androjena RDF graphs can be more efficiently 

combined into the final query dataset, as compared to individual RDF triples. We revisit this issue in 

our evaluation chapter (see Chapter 5, section 5.3.2). 

As mentioned, CacheKey instances uniquely identify CacheElement objects in the cache. Subclasses 

of CacheKey are responsible for overriding the equals method, to ensure that the method returns 

true for two identical CacheKey objects, and false otherwise. For instance, in case of Meta Cache, the 

equals method should only return true in case both MetaCacheKey instances represent the same 

metadata combination. To guarantee correct hashing, CacheUnit subclasses should also override the 

hashCode method, whereby two identical CacheKey instances should return the same hash code80.  

4.7.2.2 CacheSourceAnalyzer 

The CacheSourceAnalyzer class (see Figure 4-13) is a subclass of the SourceAnalyzer class (similar to 

the SIMSourceAnalyzer class; see section 4.7.1.2). It has one concrete subclass, namely 

MetaCacheSourceAnalyzer (class not shown), which extracts the source data and metadata required 

by Meta Cache. Specifically, it extracts individual triples from the RDF source, accompanied by their 

associated metadata (i.e., predicates, subject/object types).  

The MetaCacheSourceAnalyzer subclass performs this extraction task on a given source RDF graph, 

and returns the extracted data as a set of MetaSourceData instances. Each MetaSourceData object 

encapsulates a set of CacheTriple objects, together with their associated metadata combination 

represented as a MetaCacheKey (see section 4.7.2.6). As elaborated in section 4.7.1.2, utilizing 

SPARQL extraction queries to retrieve the necessary source metadata proved unfeasible. Therefore, 

the MetaCacheSourceAnalyzer relies on the NTripleStatementIterator class to efficiently iterate over 

individual source RDF statements. As was the case for the SIM, this means the component currently 

only supports RDF data in N-Triple format.  

4.7.2.3 CacheManager 

The CacheManager class represents the access point for the cache, and is contacted to add and 

retrieve cached data. Behind the scenes, the CacheManager automatically performs memory 

management tasks whenever the cache exceeds the maximum defined space, in which case removal 

elements are persistently stored or removed. Different CacheManager instances can be created to 

manage multiple caching systems (e.g., see section 4.7.3). Figure 4-15 shows the diagram for the 

CacheManager class.  

                                                           
80

 The inverse is not guaranteed; namely, that two different CacheKeys return different hash codes (this is in 
line with the contract of the Java Object hashCode method). 
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Figure 4-15. Query Service - Cache: CacheManager class. 

CacheManager relies on the CacheStore class (see section 4.7.2.4) for storing and retrieving cached 

data. In case storage space becomes full, the CacheManager utilizes a particular RemovalStrategy 

subclass (see section 4.7.2.7) to identify suitable cache elements to be stored persistently or 

removed. The maximum memory and persistent storage space is configurable, to suit the capabilities 

of the mobile device. Below, we elaborate on how the add and retrieve operations are realized, and 

how memory management is performed during these two operations. Then, we discuss how the 

sizes of currently used storage (in-memory/persistent) are estimated and kept up-to-date. 

When adding data (see add method), the new payload is accompanied by a CacheKey, uniquely 

identifying the data. Firstly, CacheManager passes the new data to the CacheStore for storage. Any 

newly created or updated CacheElements are then communicated to the configured 

RemovalStrategy (see add method), allowing the strategy to update its internal structures (see 

section 4.7.2.7). Afterwards, the CacheManager checks whether the new in-memory payload caused 

the in-memory storage limit to be exceeded. If so, CacheManager contacts the configured 

RemovalStrategy to obtain the “least” removal element (i.e., having the lowest removal value; see 

getLast method). To facilitate memory management, this removal element is returned as part of a 

linked list, sorted on removal value. In this linked list, each RemovalElement object is wrapped by a 

LinkedElement instance, keeping references to the next (i.e., “better”) and previous (i.e., “lesser”) 

RemovalElement object. This list allows CacheManager to easily iterate over the removal elements, 

storing them persistently or removing them until enough space has been cleared. CacheManager 

relies on the RemovalElement interface to perform these storage (moveToPersist method) and 

removal (remove method) operations. 
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In order to retrieve data (see get method), CacheManager is contacted with a CacheKey, identifying 

the requested data. Subsequently, the CacheStore is contacted to retrieve the related CacheElement 

(if any) and return its concrete payload. In addition, CacheManager indicates to the RemovalStrategy 

that the retrieved CacheElement was referenced (e.g., LRU utilizes this knowledge to calculate 

removal values; see isUsed method). It should be noted that retrieved cache elements are either in-

memory or stored persistently, depending on previous memory management operations. In case a 

persistent CacheElement is retrieved, any stored data is automatically loaded into memory (see 

section 4.7.2.1). Consequently, to keep the memory space below the configured limit, memory 

management should also be performed after each retrieval. However, this may have undesired 

consequences. In our case, cached data is fetched per query triple pattern, in order to resolve 

queries not solvable by any single source. After all triple patterns have been handled, the retrieved 

payloads are added to the query dataset. However, if memory management was applied after 

individual retrievals, previously retrieved payloads may have already been stored persistently or 

removed (which involves destroying the in-memory payload) before they could be used by client 

code (e.g., added to the query dataset). For this purpose, CacheManager allows client code to 

indicate when retrieved data is no longer needed (e.g., after query execution; see nudgeCache 

method). After invoking this method, memory management will be performed. While this 

mechanism increases flexibility, it also allows the in-memory storage limit to be exceeded during 

data retrieval, possibly leading to out-of-memory errors. Responsibility to utilize this mechanism 

correctly lies with the client code. 

The sizes of the currently used in-memory and persistent storage are dynamically kept up-to-date. 

CacheUnit subclasses (e.g., CacheTripleSet for Meta Cache; see section 4.7.2.6) are responsible for 

estimating their payload size in bytes. Each time an operation is performed influencing memory / 

storage space, these subclasses contact CacheManager (e.g., see newUnit, updateUnit methods), 

which then requests their new payload size to update the currently used storage sizes. Since the 

Android API does not supply tools to efficiently and accurately measure object memory usage at 

runtime (such as e.g., the Java Instrumentation API), the actual payload size is estimated. This 

estimated size includes the size of concrete payload, such as character arrays and integers, but not 

the object overheads of the CacheUnit objects (e.g., CacheTripleSet) or payload objects (e.g., 

CacheTriple). As we discuss in the evaluation chapter (see Chapter 5, section 5.3.2), this estimation 

corresponds only roughly to the actual memory usage. Devising a better way to accurately estimate 

memory usage is future work. 

4.7.2.4 CacheStore 

The CacheStore class is responsible for storing and retrieving cached data, and implements a 

particular cache organization for efficient and fine-grained retrieval. In Figure 4-16, we show the 

CacheStore class, together with its subclasses. 
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Figure 4-16. Query Service - Cache: CacheStore package. 

A CacheKey identifies data to be added, retrieved or removed from the CacheStore. In case the key 

to be added already exists, the associated cache element is updated with the new payload. Else, a 

new cache element will be created. A CacheChange object identifies the changes in the cache 

resulting from an add operation, and includes either the updated cache element or the newly 

created element. After a retrieval operation, the found payload (if any) is returned in the form of a 

CacheResult object. In case of Meta Cache, this result also includes sources to be re-downloaded, in 

the form of MissingKey objects (see section 4.7.2.6). Finally, it should be noted that, for performance 

reasons, none of the cache stores currently check for duplicate triples. 

4.7.2.5 SourceCacheStore 

The SourceCache class implements the Source Cache organization (see section 4.5.1.1) and organizes 

the cached data via its origin source. Most of its functionality is implemented via generic super 

classes. Figure 4-16 (see previous section) shows the inheritance hierarchy for SourceCacheStore. 
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The DefaultCacheStore class is a straightforward implementation of CacheStore, utilizing a hashmap 

to map cache keys to their corresponding cache elements. For certain operations, such as creating 

and updating the kept cache elements, it relies on its subclasses (see abstract methods). The 

RdfGraphCacheStore class inherits from DefaultCacheStore, and utilizes the CacheRdfGraph class 

(see Figure 4-14) to serve as cache element. Finally, the SourceCacheStore class is a concrete subclass 

of RdfGraphCacheStore, where each CacheRdfGraph element will keep RDF data originating from a 

specific source. A SourceCacheKey object uniquely identifies a CacheRdfGraph instance with data 

originating from a specific online source. 

In order to store the RDF graph, a CacheRdfGraph keeps an RdfGraph subclass instance (see Figure 

4-8) as payload. In particular, it keeps an AndrojenaRdfGraph object, which utilizes the Androjena 

library to locally handle and query RDF data. This library was extended to optimize the combining of 

RDF graphs, significantly reducing the overhead of assembling individual, cached sources into a single 

query dataset. We shortly revisit this issue in the evaluation chapter (see Chapter 5, section 5.3.2). 

4.7.2.6 MetaCacheStore 

The MetaCacheStore organizes the source data via its shared metadata (i.e., predicate, subject types, 

object types), and implements the Meta Cache organization (see section 4.5.1.2).  

Figure 4-17. Query Service - Cache: MetaCache package. 

 shows the MetaCacheStore package. Below, we first elaborate on the keys and different types of 

elements in the MetaCacheStore. Then, we discuss the retrieval and add operations. 
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Figure 4-17. Query Service - Cache: MetaCache package. 
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Keys and elements 

A MetaCacheKey object stands for a particular metadata combination, and is used to uniquely 

identify cached data. In more detail, a MetaCacheKey object keeps a set of IndexableKeyPart 

instances, each representing an individual piece of metadata. Via these IndexableKeyPart instances, 

internal indices perform a mapping from metadata parts to associated cached data (see below). 

KeyPartTerm, subclass of IndexableKeyPart, encapsulates RDF terms (i.e., predicates and types) and 

overrides the hashCode method to ensure unique hashing (i.e., two identical metadata parts return 

the same hash code), and the equals method for correct comparison. As the KeyPartTerm class wraps 

data in our mobile query service, it has a concrete subclass performing dictionary encoding (see 

section 4.7.1.1).  

The MetaKeyElement interface stands for any element identified by a MetaCacheKey. This includes 

cache elements (MetaCacheElement class), as well as elements identifying previously removed 

source data (MissingKey class) and MetaCacheKey objects themselves. MetaCacheElement objects 

keep RDF triples sharing the same metadata, which is reflected by its declared methods to access 

RDF triples (e.g., getTriplesIterator). The CacheTripleSet class implements the MetaCacheElement 

interface and is a concrete subclass of CacheUnit (see section 4.7.2.1), making it the default unit of 

storage, removal and retrieval in Meta Cache. A CacheTripleSet object keeps a set of cached RDF 

triples in the form of CacheTriple instances. To reduce the in-memory storage space, the CacheTriple 

class (not all fields shown) also applies dictionary encoding. The MissingKey class stands for 

previously removed cached data, keeping the MetaCacheKey identifying the removed data, as well as 

the SourceURLs from which the data originated. Below, we discuss the rationale behind the 

MissingKey class. 

Missing keys are an accurate and efficient way of determining which sources need to be re-

downloaded to serve an information request. As an alternative, the Source Index Model could be 

employed to identify sources previously removed from the cache. Specifically, given a metadata 

combination, missing sources could be identified by subtracting the relevant sources found in Meta 

Cache from the total set of found SIM sources. However, relying on missing keys avoids the overhead 

of keeping an extra index data structure. Furthermore, missing keys stand for a more accurate way of 

identifying sources that contain removed cached data. As previously mentioned, it is possible that in 

specific cases, sources identified by the SIM do not actually contain query-relevant data; due to the 

fact metadata combinations are indexed on a per-source level (for more details, see section 4.4.1). 

Consequently, missing keys enable us to further reduce the number of source downloads (see second 

challenge, minimizing source downloads). 

In Figure 4-18, we show an example Meta Cache structure. To enable fast retrieval of cached data, 

the MetaCacheStore keeps internal indices on each metadata part (i.e., predicate, subject type and 

object type). Compared to related work on RDF stores, this schema-level indexing achieves a balance 

between retrieval speed and memory overhead; see Chapter 2, section 2.2.8.3 for a discussion. 

Specifically, these indices map from an IndexableKeyPart to a CacheBunch instance, which collects 
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MetaKeyElements (i.e., MetaCacheElements or MissingKeys) of which the associated MetaCacheKey 

keeps a specific indexed metadata part. For instance, in Figure 4-18, the foaf:knows metadata term is 

connected to a CacheBunch keeping a MetaCacheElement and MissingKey, each having the 

foaf:knows term in their MetaCacheKey.  

 

Figure 4-18. Query Service – Cache: Meta Cache structure. 

Retrieve operation 

When performing the search operation, one of the aforementioned indices is employed to retrieve a 

set of matching MetaKeyElement instances, whereby the used index depends on the supplied 

metadata parts (i.e., specified by the query). Each of the returned MetaKeyElement objects hereby 
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adheres to a single metadata part in the search key (i.e., predicate, subject/object type). Afterwards, 

the MetaCacheKey associated with each found MetaKeyElement is compared to the entire search 

key. In this comparison, the cached MetaCacheKeys need not exactly match the search key; while the 

predicates need to be identical, the subject/object types of the search key need to be a (non-strict) 

subset of the cached key types. For instance, in case a search key looks for RDF triples with subject 

type foaf:Person, cached triples with subject types foaf:Person and dcmi:Agent are also returned (as 

their subject is also a foaf:Person). Consequently, a search may return multiple matching 

MetaKeyElement instances. After the search operation, we obtain a set of MetaCacheElement and 

MissingKey instances, whereby the found MetaCacheKeys and MissingKeys, together with the 

wrapped CacheTriples, are finally returned as a result. 

It should be noted that the retrieved triples do not include the original source triples declaring types 

for the RDF resources. However, for completeness, these type triples should also be returned; for 

instance, in our case, they are required to successfully resolve the original query. Storing these type 

triples in the cache) would significantly increase storage space. Initially, these type triples were 

automatically generated and returned as extra CacheTriples, based on the retrieved triples and types 

found in associated MetaCacheKeys. However, this resulted in a significant performance overhead, 

since this required iterating over each returned cache triple and generating corresponding type 

triples. Consequently, the result was simply extended to include related MetaCacheKeys for the 

returned triples (see MetaCacheResult class, Figure 4-16), thus supplying the types associated with 

each returned RDF resource. Client code can then utilize these resource types as they see fit. In our 

case, we extended the Androjena library to efficiently insert resource types into the query graph.  

Add operation 

In order to add new source data to the cache, the payload and its identifying MetaCacheKey are 

passed to the MetaCacheStore. The add operation either leads to new cache elements being created 

or existing ones being updated, depending on whether the particular MetaCacheKey already exists in 

the cache. To perform this check, the search key is exactly matched to cached keys, whereby their 

predicates as well as subject/object type sets need to be identical (in contrast to regular search, see 

above). In case no match is found, a new cache element is created and loaded with the new payload. 

Else, the matching cache element is updated with the new payload.  

Finally, it is possible source data from the new payload’s origin source(s) had previously been added 

to the cache, and removed in order to clear storage space. Any missing keys, matching the new 

MetaCacheKey and the new payload’s origin source(s), are removed from the cache, since the 

indicated data is no longer missing from the cache.  

4.7.2.7 RemovalStrategy 

The RemovalStrategy class identifies certain cached data (e.g., unlikely to be referenced again), 

which will be stored persistently or removed to clear space. Figure 4-19 shows the RemovalStrategy 

package. Below, we elaborate on the main classes. 
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Figure 4-19. Query Service - Cache: RemovalStrategy package. 

The RemovalElement interface represents the unit of removal in the cache. RemovalElement 

declares methods enabling memory management; for moving data to persistent storage 

(moveToPersist method) and removing the data entirely (remove method). As mentioned, in most 

cases, the unit of removal will be equal to the storage unit (represented by the CacheUnit class). To 

accommodate such cases, the CacheUnit class implements the RemovalElement interface (see 

section 4.7.2.1). When the Least-Recently-Used (LRU) strategy is applied to Meta Cache, the 

CacheTripleSet class (subclass of CacheUnit) will stand for both the unit of storage and removal. In 

contrast, the Least-Popular-Sources (LPS) removal strategy requires both units to be decoupled, 

whereby the unit of removal equals the origin source of cached data. In this case, the SourceUnit 

class (implementing the RemovalElement interface) serves as removal unit. 

The RemovalStrategy class is responsible for calculating replacement (or removal) values for each 

RemovalElement. In addition, RemovalStrategy keeps a RemovalLinkedList instance, which 

represents a linked list of RemovalElements sorted on their removal value. In case not enough space 
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is available, the CacheManager component requests the “least” (i.e., last) RemovalElement wrapped 

as a LinkedElement (see section 4.7.2.3). As new cache elements are created, updated, removed or 

referenced, CacheManager notifies the configured RemovalStrategy (see add, update, remove and 

isUsed methods), allowing it to re-calculate removal values and update its RemovalLinkedList.  

Below, we elaborate on the RemovalLinkedList implementation (section 4.7.2.8), as well as the 

implementation of the two concrete RemovalStrategy subclasses, namely LRUStrategy (section 

4.7.2.9) and LPSStrategy (section 4.7.2.10). 

4.7.2.8 RemovalLinkedList 

The RemovalLinkedList interface represents a linked list of removal elements, sorted on the 

calculated removal values. Figure 4-20 shows the RemovalLinkedList interface, together with its two 

implementing classes (not all subclass methods shown). 

 
Figure 4-20. Query Service – Cache: RemovalLinkedList. 

Both subclasses rely on the SortedLinkedList and SortedLinkedElement classes. In order to efficiently 

implement the update and remove methods, which require updating the kept linked list(s), each 

RemovalLinkedList subclass keeps a mapping from RemovalElement instances to 

SortedLinkedElement objects. 
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The DefaultRemovalList subclass represents a straightforward implementation. This class keeps a 

single SortedLinkedList instance, containing all RemovalElements packaged as SortedLinkedElement 

objects. However, we observed this approach incurs a serious drawback during memory 

management, when the CacheManager component iterates over the linked list to clear space (see 

section 4.7.2.3). More specifically, each time memory space needs to be cleared, CacheManager 

needs to iterate over both in-memory and persistently stored removal elements, although 

operations are only applied on in-memory elements (vice versa when clearing persistent storage 

space). Therefore, many irrelevant elements are iterated, yielding large performance overhead.   

By separating in-memory and persistently stored elements into two different lists, the currently 

utilized linked list (e.g., keeping in-memory elements) only contains removal elements relevant to the 

current task (e.g., clearing memory space). This solution is implemented by the SplitRemovalList 

subclass, which keeps two separate SortedLinkedList instances, respectively containing in-memory 

and persistent removal elements. A drawback of this approach is that both lists need to be carefully 

kept up-to-date. The required housekeeping is implemented by the extra methods 

movingToMemory, movedToMemory, movingToPersist and movedToPersist in the RemovalStrategy 

and RemovalLinkedList classes. For instance, the movingToMemory method needs to be invoked 

right before a cache element is loaded into memory; in case its associated removal element(s) is not 

yet in-memory, the removal element is added to the in-memory list. Aside from the extra complexity 

caused by this housekeeping, the continuous moving of removal elements between the two linked 

lists incurs insertion and removal costs. We observed during experiments that this leads to a large 

performance overhead during the Data Query phase, where large amounts of elements are loaded in 

memory and thus moved from the persistent to the in-memory list. To avoid this overhead slowing 

down query execution, an extra loadedRemovalElements method was introduced, which is called 

after query execution and indicates that the passed removal elements have been loaded into 

memory. Both the LRU and LPS strategy implementations utilize the SplitRemovalList subclass. 

4.7.2.9 LRUStrategy 

LRUStrategy (diagram not shown) realizes the well-known Least-Recently-Used (LRU) removal 

strategy. LRU estimates the likelihood of data being required in the future, by assuming recently 

referenced items will likely be referenced again (temporal locality).  

LRUStrategy is a subclass of DefaultRemovalStrategy. In these removal strategies, the same unit is 

employed for storage, removal and retrieval (i.e., CacheUnit class). The DefaultRemovalStrategy 

superclass implements most operations, deferring the removal value calculation to the subclasses. 

The LRUStrategy subclass performs this calculation based on the number of references made to each 

cache element. 

4.7.2.10 LPSStrategy 

The LPSStrategy class implements the Least-Popular-Sources (LPS) strategy presented in this thesis. 

This strategy considers the source’s popularity, reflected by 1/ the popularity of its source data, i.e., 
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the number of stored cache units containing the data, and 2/ the popularity of its own metadata, i.e., 

how often the contained metadata is found in other sources. Additionally, the download cost of the 

associated online sources is taken into account. Figure 4-21 shows the LPSStrategy package.  

 

Figure 4-21. Query Service - Cache: LPSStrategy package. 

The LPSStrategy class is a subclass of the SourceBasedRemovalStrategy class. For source-based 

removal strategies, the removal unit equals the data’s origin source, and is represented by the 

SourceUnit class. SourceUnit realizes the RemovalElement interface, and allows memory 

management operations (e.g., store data persistently, remove data) to be applied to all cached data 

from a specific origin source. Each SourceUnit also keeps a DownloadData object, encapsulating 

download data related to the origin source (e.g., download time). This information is used to 

calculate the LPS removal value. 

In order to persistently store or remove all origin source data, we leverage the memory management 

support supplied by cache units, in particular those cache units that store the corresponding source 

data. However, these cache units likely keep data from other sources as well (e.g., CacheTripleSet 

instances typically contain RDF triples from multiple sources). To gain more flexibility, the storage 

unit is further decoupled from the unit of retrieval. In our setup, each individual CacheUnit keeps 

data originating from a single source, and suiting a specific CacheKey. Consequently, storing or 

removing a cache unit only influences data from one particular online source. At the same time, the 
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CompositeCacheElement class is employed as retrieval unit, grouping all CacheUnits adhering to the 

same CacheKey.  

To realize its role as RemovalElement, the SourceUnit class keeps references to 

CompositeCacheElements wrapping related source data. For each RemovalElement method (e.g., 

moveToPersist, remove), the SourceUnit class iterates over each of its CompositeCacheElements, 

delegating the operation to only those cache units keeping its particular source’s data. Regarding 

retrieval, the cache store locates CompositeCacheElements matching the search key.  

It can thus be observed that, by separating the units of removal, storage and retrieval, data can be 

removed per origin source (or any other criteria); while data matching a given CacheKey can still be 

easily returned. The SourceBasedRemovalStrategy abstract class implements most methods, and 

delegates responsibility for calculating removal values towards subclasses (e.g., LPSStrategy). Finally, 

to efficiently implement update and remove operations, the SourceBasedRemovalStrategy class also 

keeps a map from SourceURLs to their corresponding SourceUnit, as well as from CacheElements to 

their associated SourceUnits.  

4.7.2.11 PersistentStorage 

In order to store its payload persistently, the CacheUnit class (and its subclasses) relies on the 

PersistentStorage class. Figure 4-22 shows the PersistentStorage package.  
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Figure 4-22. Query Service: PersistentStorage package. 

When storing their payload, cache units invoke the nextStorageInfo method of the configured 

PersistentStorage object, which returns a PersistentStorageInfo object defining the next available 

storage location. Importantly, PersistentStorageInfo supplies PersistentWriter and PersistentReader 

objects, which can respectively be used to easily write payload to the defined storage location, and 

read previously written payload.  

Currently, the implementing classes of PersistentStorage all utilize the file system81. For the 

DefaultPersistentStorage subclass, each PersistentStorageInfo instance points to a single persistent 

file. It should however be noted that, in case of Meta Cache, there might be hundreds of thousands 

of cache units82. Since only a relatively small number is kept in memory (depending on the 

configurable in-memory limit), this means a huge amount of files will be stored on the file system, 

which may pose problems when clearing the persistent cache on a mobile device (e.g., when the 

mobile query service needs to be reset). The ClusteringPersistentStorage subclass groups payloads 
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 As payload data always needs to be entirely written / read by a CacheUnit, there is no need for a queryable 
persistent database (which incurs performance overhead). 
82

 One for each individual metadata combination; in case the LPS removal strategy is applied, cache units are 
even further partitioned to store triples according to origin source. 
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into “cluster” files, up to a configurable amount. As such, it allows keeping the total number of 

persistent files in check.  

During experiments, we noticed both storage mechanisms negatively impact performance in case of 

the Least-Popular-Sources (LPS) strategy, due to the separation of retrieval, storage and removal 

units. In case of LPS, when performing memory management operations, all cache units (storage 

unit) related to a particular source (removal unit) need to be stored or removed. For the 

aforementioned storage mechanisms, this means writing each separate payload to an individual file 

(DefaultPersistentStorage) or writing them sequentially to one or more cluster files 

(ClusteringPersistentStorage). When retrieving data, all cache units need to be loaded adhering to 

the search metadata combination (retrieval unit), meaning all their individual (cluster) files need to 

be loaded; leading to a large performance overhead.  

In response, a third PersistentStorage subclass called SharedPersistentStorage was introduced, which 

allows arbitrarily grouping particular payloads into single files. For our purposes, grouping may occur 

via unit of retrieval (i.e., shared metadata) or removal (i.e., origin source). In case grouping occurs via 

retrieval unit, all payloads adhering to a particular metadata combination are stored in a single file. 

Concretely, this means a single retrieval only requires accessing one file, while memory management 

requires accessing each file keeping a metadata combination from a particular origin source. In case 

grouping is performed via removal unit, all payloads originating from the same source are stored in a 

single file. In this case, memory management only involves accessing the origin source’s persistent 

file, while a single retrieval involves accessing each file keeping source data adhering to the given 

metadata combination. Consequently, both clustering methods present a consideration between 

extra memory management and data retrieval overhead. In our evaluation chapter (see Chapter 5, 

section 5.4), we compare both clustering methods. 

The clustering methods discussed above allow reading/writing operations to be confined to single 

files. To support this efficiently, PersistentReader and PersistentWriter objects can re-use the same 

Java FileReader/FileWriter behind the scenes. The SharedIOFactory abstract factory subclass re-uses 

the same FileReader and FileWriter objects for created PersistentReader and PersistentWriter 

objects, respectively. 

4.7.3 Type mediation 

In this section, we first review the implementation supporting the type mediation process (section 

4.7.3.1). Then, we elaborate on the particular type mediation processes updating the SIM (section 

4.7.3.2) and Meta Cache (section 4.7.3.3), respectively.  

4.7.3.1 Supporting implementation 

This section first discusses the additional memory overhead yielded by type mediation. Afterwards, 

we review the implementing package structure. 
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Type mediation necessitates keeping track of resource types across different data sources. This 

requires indexing the encountered resources, and keeping type information for each resource (as 

well as other data required by the particular type mediation process). It can be noted that indexing 

resources (i.e., instance-level) significantly increases memory overhead, and thus reduces the 

benefits of focusing on source metadata (i.e., schema-level) in the mobile query service. On the other 

hand, the developed resource index (see below) still consumes less memory space than the ones 

utilized by RDF stores. Since RDF stores need to efficiently return query-relevant RDF triples, the 

stores need to support multiple query access patterns, for instance resulting in a separate index for 

each triple pattern part (i.e., subject/predicate/object; Androjena) or multiple indices to cover each 

possible access pattern (resulting in 6 indices; YARS [71] and HexaStore [72]). In contrast, type 

mediation only requires a single index. Moreover, our resource index does not have to store blank 

nodes, since their identifiers are scoped locally and are not portable across RDF graphs83.  

In Figure 4-23, we show the general ResourceIndex package and related classes. Below, we shortly 

elaborate on these classes. 
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Figure 4-23. Query Service – Type mediation: ResourceIndex package. 

The type mediation process is implemented via a TypeMediator subclass, and depends on the 

particular query service component. The ResourceIndex class indexes the required resource 
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information, while the resource information itself is represented by the ResourceInfo class. 

Subclasses of ResourceInfo keep resource data required by the specific type mediation process (see 

following sections for more details). ResourceIndex subclasses are independent of the actual process; 

we discuss two subclasses below. 

The first resource index subclass, DefaultResourceIndex, stands for a straightforward solution, 

keeping a map (hash table) to link resource URIs to their corresponding ResourceInfo instances. 

However, this indexing solution presents a significant memory overhead, since all (dictionary-

encoded) resource URIs, together with their ResourceInfo instances, need to be kept in memory. In 

order to reduce memory usage, we also provide a MultiLvlResourceIndex subclass. This resource 

index leverages a multi-level index solution, implemented by the MultiLvlIndex class. In particular, 

this multi-level index supports swapping with persistent storage to save memory, whereby a 

configurable amount of indices can be persistently stored. Since MultiLvlIndex is a subclass of 

MultiLvlEntry, indices can be nested. By further letting the MultiLvlEntry class inherit from the 

CacheUnit class, we can re-use the existing CacheManager class to manage the in-memory space 

occupied by the indices (see section 4.7.2.3). In our case, the multi-level index solution is configured 

to span two levels. The first-level MultiLvlIndex object links the resource URI domains to second-level 

MultiLvlIndex instances. In turn, these second-level indices connect the local parts of resource URIs 

to their corresponding ResourceInfo instances. The second-level MultiLvlIndex objects are registered 

with the CacheManager, meaning these indices will be moved to persistent storage in case memory 

is full.  

We configured the CacheManager instance with the Least-Frequently-Used (LFU) removal strategy, 

which proved to perform well for our multi-level index solution. Instead of a concrete in-memory 

byte limit, we limit the number of (second-level) indices to be kept in-memory. We note that, 

although the MultiLvlResourceIndex introduces a significant performance overhead due to the 

persistent swapping of data, it allows us to keep the utilized memory in check. We discuss the 

performance of both resource indices in our evaluation chapter (see Chapter 5, section 5.5.2.2). 

4.7.3.2 Source Index Model 

The SIMResourceInfo subclass encapsulates the resource information required by the Source Index 

Model’s type mediation process. Aside from the resource URI and previously found types, 

SIMResourceInfo also keeps a list of sources in which the resource was found. Below, we discuss the 

SIM type mediation process during the Source Encounter and Data Query phases. 

Source Encounter phase 

RDF resources from newly encountered online sources, together with their found types, are checked 

against the information in the resource index. The goal of this check is to determine whether the 

resources were previously encountered, and if so, whether the source defines new types for these 

resources. If new types are found, the type mediation process ensues, which updates the multi-level 

index kept by the SIM (see section 4.4.1). More specifically, new metadata combinations are added, 
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reflecting the newly found types for the resource. For instance, consider a new dcmi:Agent type for a 

particular resource, which was previously found as subject with predicate foaf:knows and object type 

bio:Agent. In that case, the metadata combination foaf:knows – dcmi:Agent – bio-Agent needs to be 

added to the SIM. 

To construct these new metadata combinations, we need to know to which predicate (e.g., 

foaf:knows) and subject/object type(s) (e.g., bio:Agent) the particular resource was previously linked. 

In order to obtain this information, the type mediation component retrieves all data sources in which 

the resource occurs, as indicated by the associated SIMResourceInfo instance. These sources are 

obtained either from the cache (e.g., Source Cache; see section 4.5.1.1) or by re-downloading them. 

From these sources, the type mediator obtains the predicates and subject/object resources occurring 

together with the particular resource, and retrieves those resources’ types via the resource index. It 

can be observed that, in case no local cache is present, this mediation process will incur a significant 

overhead caused by the required source downloads. As a result, this is an optimistic solution, which 

assumes that type mediation does not need to occur often. 

Data Query phase 

During the Data Query phase, the SIM identifies query-relevant sources based on its up-to-date 

metadata. However, while the SIM metadata was updated by the type mediation process, the online 

sources cannot be updated with the mediated resource types. This is a result from our specific 

setting, where data is captured in online files not under our control (see second challenge, Data 

captured in online files). To efficiently deal with this issue, the ResourceIndex additionally stores a 

mapping between source URLs and their contained resource URIs. During the Data Query phase, the 

mappings for the identified sources are loaded, whereby the mediated types of contained resources 

are added to the final query graph. 

4.7.3.3 Meta Cache 

The CacheResourceInfo class wraps the resource information required by the type mediation process 

for Meta Cache. This data includes the resource URI, together with references to cache units 

containing the resource. Below, we shortly detail the type mediation process for Meta Cache during 

the two different phases.  

Source Encounter phase 

RDF resources extracted from newly encountered sources, together with their associated types, are 

checked against the resource index. In case corresponding CacheResourceInfo objects are found, the 

previous types are obtained via one of the associated cache units’ metadata combinations. In case 

the new source defines new resource types, the type mediation process ensues. Essentially, this 

involves moving the resource’s cached triples to other cache units, matching the resource’s new 

types. Afterwards, the CacheResourceInfo objects, corresponding to the particular triple resources, 

are updated with the new corresponding cache units. 
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During experiments, we found that this process, which involves extracting triples from their cache 

units, lead to significant performance issues (as it required loading persistently stored cache units 

entirely into memory). To optimize the extraction process, we utilize a persistent map (in particular, a 

B+ tree84) connecting each stored resource URI to pairs of byte offsets, pointing to the resource’s 

triples in the stored data. This index enables us to load only those triples specifying the particular 

resource, significantly reducing the read overhead. In addition, a list of byte offset pairs is kept, 

pointing to the triples that were previously extracted. When the cache unit is afterwards loaded into 

memory, the indicated triples are simply skipped. Finally, constructing and maintaining this 

extraction index naturally incurs a performance overhead. Therefore, this index is only kept for cache 

units exceeding a certain size, for which the regular extraction process would lead to problematic 

performance. 

Data Query phase 

The up-to-date metadata associated with retrieved cache units, represented by MetaCacheKey 

objects, is directly utilized as (mediated) type information for the cached resources (see section 

4.7.2.6). On the other hand, type mediation needs to be re-applied to sources (see process above) 

that were downloaded in response to cache misses. As before, this is a result from our setting where 

data is captured in online files not under our control (see second challenge, Data captured in online 

files; section 4.2). 

4.8 Summary 
In this chapter, we introduced a mobile, general-purpose and client-side query service, supplying 

transparent and integrated query access to large amounts of small online sources. In doing so, the 

mobile query service unlocks a large Semantic Web segment for consumption by mobile devices, 

consisting of online RDF files and semantically annotated websites (e.g., via RDFa).  

In order to meet the challenges arising in our particular querying scenario, two solutions naturally 

present themselves. By identifying online data relevant to posed queries, we meet our two challenges 

of reducing the final query dataset and decreasing the number of source downloads. Moreover, by 

locally caching data likely to be frequently referenced, the number of required source downloads can 

further be reduced. Furthermore, two key requirements should be considered: fine-grained data 

identification and retrieval, whereby online sources are identified with high selectivity and locally 

cached data is retrieved in a fine-grained way; and reducing memory usage and processing effort, to 

cope with the fact that mobile device capabilities are still relatively limited compared to larger 

devices (e.g., laptops). 

The aforementioned solutions are implemented via the Source Index Model (SIM), which identifies 

query-relevant online sources by indexing source metadata; and the Source and Meta Cache 
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components, which locally cache source data. Respectively, these caches organize the cached data 

via origin source and shared source metadata. In order to efficiently identify query-relevant online 

sources, the SIM utilizes a multi-level index structure. By investigating these two separate cache 

components, as well as SIM variants keeping varying amounts of source metadata, we aim to study 

the impact of source metadata on data selectivity and performance (see requirements above). On 

the other hand, we note that our focus on source metadata incurs a drawback related to the 

Semantic Web’s Open World Assumption (OWA). In case online sources specify extra types for 

already processed source data, previously indexed metadata may become out-of-date. To resolve 

this issue, a type mediation process should be applied (see below). Finally, to keep the cached data 

up-to-date, we apply a data validity strategy. 

We introduced a removal strategy called Least-Popular-Sources (LPS) for Meta Cache, suited towards 

our particular setting where data originates from online files. In order to optimize query resolution, 

LPS considers the “popularity” of online sources, as signified by 1/ the popularity of its source data, 

i.e., the number of stored cache units containing the data, and 2/ the popularity of its own metadata, 

i.e., how often the contained metadata is found in other sources. These factors reduce the 

probability of cache misses and keep the number of source re-downloads in check. In order to make 

it less likely that sources with a high download cost are removed, source download times are 

considered as well. 

Finally, our mobile query service implements two features to support the Semantic Web’s Open 

World Assumption (OWA). The first feature, called type mediation, is applied in case online sources 

specify different types for the same RDF resources. This process involves keeping track of resource 

types across sources, and updates components to reflect new resource types. This feature can be 

enabled or disabled, based on the composition of the online semantic dataset. Furthermore, we note 

that related approaches also encounter this issue but do not attempt to resolve it [2, 7, 8]. Type 

inferencing enriches the kept source metadata, as well as extracted search constraints, using 

ontological knowledge (i.e., domain/range restrictions, subclass relations). To suit mobile application 

needs and device capabilities, type inferencing can likewise be enabled or disabled (cfr. RDF store 

inferencing support).  



 

  



 

Chapter 5  

Experimental validation 

The previous chapter elaborated on the mobile query service. We discussed issues and challenges 

arising in our specific querying scenario, and presented two solutions to tackle these challenges; 

namely, identifying online query-relevant data and locally caching data. These solutions were 

respectively implemented by 1/ the Source Index Model, and 2/ the Source Cache and Meta Cache. 

We further specified a number of requirements to which these software components should adhere. 

We discussed our aim to investigate whether source metadata (i.e., predicates and types) enables us 

to achieve a balance between fine-grained data retrieval on the one hand, and memory and 

processing overhead on the other. Regarding the cache, we introduced the Least-Popular-Sources 

removal strategy, which is fine-tuned to our specific setting where data originates from online 

sources. The chapter also discussed support for the Semantic Web’s Open World Assumption (OWA). 

This chapter presents an experimental validation of the query service components. In our 

experiments, we apply a mobile context-aware scenario, where SCOUT plays the role of client. 

SCOUT utilizes the mobile query service to transparently query online semantic data, associated with 

the user’s surroundings. A real-world dataset, extracted from existing online sources, serves as the 

online semantic dataset. 

The evaluation encompasses the following three sub-evaluations:  

- Source Index Model 

In order to accurately evaluate the impact of source metadata on data selectivity and performance, 

we study and compare different variants of the SIM. Each variant keeps varying amounts of 

metadata: SIM1, which only indexes predicates; SIM2, indexing predicates and subject types; and 

SIM3, which indexes predicates, subject and object types. In addition, we check the case where no 

SIM is used (i.e., native query engine performance) and queries are simply executed on the entire 
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dataset. We offset the runtime overhead and memory requirements to the resulting source 

selectivity and query execution times. 

- Cache 

The Source Cache and Meta Cache organizations are compared, which respectively organize cached 

data via origin source and shared metadata. Similar as for the SIM, we contrast runtime performance 

and memory overhead to the fine-graininess of data retrieval and query execution performance. 

Furthermore, we investigate the effect of applying the Least-Popular-Sources (LPS) strategy; and 

compare it to when an arbitrary removal strategy is employed, in this case the Least-Recently-Used 

(LRU) strategy. For LPS, we test different weights for the factors in the removal value calculation, and 

evaluate their impact. Furthermore, we study how different persistent data clustering methods 

influence performance. 

- Open World Assumption 

We evaluate the two Semantic Web Open World Assumption (OWA) features, namely type 

inferencing and type mediation. The performance and memory overhead incurred by these features 

is weighed against the resulting improvement in data access, yielded by retrieving additional query-

relevant results and ruling out irrelevant data. 

This chapter is structured as follows. Section 5.1 outlines the setup for the experiments. In the 

following sections, the individual experiment results for the Source Index Model (section 5.2), cache 

(section 5.3), removal strategies (section 5.4) and OWA features (section 5.5) are presented and 

discussed in detail. Section 5.6 presents a general conclusion based on the experimental results. In 

section 5.7, we summarize this chapter. 

5.1 Experiment setup 
This section elaborates on the experiment setup. We detail the mobile device used for the 

experiments (section 5.1.1), as well as the experiment dataset (section 5.1.2) and querying scenario 

(section 5.1.3). The section also discusses the different aspects of the experiment methodology 

(section 5.1.4). 

5.1.1 Device 

The experiments were performed on a Samsung Galaxy S III, with a 1.4GHz quad-core processor, 1GB 

RAM and 16GB persistent storage. The installed Android OS was version 4.1.2 (Jelly Bean) with API 

level 16. On this device, Android applications obtain a maximum Java heap space of 64Mb. 

5.1.2 Dataset 

The online semantic dataset consists of 5000 data sources, with a total size of 526Mb (average size is 

ca. 108Kb). These data sources were extracted from various online datasets, some of which were 
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found on the Billion Triples Challenge (BTC) 2012 Dataset webpage85. For our experiments, the data 

sources (in N-Triple format) were distributed across four different web servers (not located on the 

local network). Below, we shortly discuss the datasets from which the sources were extracted. 

1) Freebase86 is a community-curated online information system for people, places and things, and 

supplies an RDF version of its data. This RDF data was retrieved by the BTC team and provided on 

their webpage.  

2) The Timbl dataset was crawled by the BTC team starting from Tim Berners-Lee’s FOAF file87, and 

provided on the BTC webpage.  

3) LinkedGeoData88 (LGD) is an online semantic dataset, based on data collected from the 

OpenStreetMap89 project. We retrieved this dataset via the data dump files provided on their 

website.  

4) DataHub90 is a community-run catalogue of useful data on the Web. The BTC team retrieved the 

RDF data from DataHub and provided it on their webpage. 

5) The BestBuy91 website is a large online webshop providing RDF versions of its data. We performed 

a crawling process to collect a subset of this RDF data.  

6) DBPedia92 is an online semantic dataset containing structured information from Wikipedia. We 

utilized data from DBPedia to enrich the extracted Freebase and LinkedGeoData datasets. This was 

made possible via freely available interlinks, which connect equivalent resources from these datasets 

via the owl:sameAs predicate. Due to these interlinks, datasets such as DBPedia, LinkedGeoData, 

NYTimes,  and Geonames are not closed data silos, but instead become interlinked parts of the 

Linked Data cloud93. 

7) The NYTimes94 maintains an RDF version of its online news information. As above, we leveraged 

the available interlinks to enrich the Freebase dataset with information from this online dataset.  

8) Geonames95 is an online geographical database which provides its data in RDF. We exploited 

interlinks to enrich the LinkedGeoData dataset with information from the Geonames dataset.   
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Note that these datasets comprise general information on people (Timbl dataset), places and things 

(Freebase, DBPedia, and NYTimes datasets), location-related and geographical information 

(LinkedGeodata and Geonames datasets), as well as products for sale (BestBuy dataset) and 

randomly collected data (DataHub). Therefore, they suit the context-aware query scenario applied in 

our experiments (see section 5.1.3). The dataset is available on 

http://wise.vub.ac.be/william/phd/index.htm#experiments. 

5.1.3 Query scenario 

Our experimental validation applies a context-aware query scenario, where SCOUT poses as a client. 

In this scenario, SCOUT continuously discovers new physical entities, including people, places and 

things, in the user’s vicinity (e.g., using sensing technologies such as RFID/NFC), and extracts 

references to associated online semantic sources (e.g., by reading URLs from RFID tags). These 

detected source references are passed to the mobile query service during the Source Encounter 

phase (see Chapter 4, section 4.3).  

During the Data Query Phase, SCOUT utilizes the query service to achieve transparent and integrated 

query access to the detected semantic sources. We constructed five queries that request useful 

information in a context-aware setting, and refer to the different types of data in the experiment 

dataset (e.g., geographical entities, people). One query (the first query) returns all shopping centers 

together with their names, absolute coordinates, town, and (optionally) photos; and another query 

(the third query) returns all airports together with their absolute coordinates. Such queries, which 

return geographical data, allow plotting relevant physical entities (i.e., shopping centers and airports) 

on a map. Another query (the second query) selects all persons and the groups they are member of, 

optionally with images depicting these persons and their online chat accounts. The fourth query 

retrieves all exhibitions, together with their names, start- and end-dates, venues, displayed art pieces 

and the names of those pieces. The fifth and final query selects products for sale below 20 dollars, 

their price, manufacturer, product name, and user comments. Such queries retrieve an overview of 

interesting physical entities in the user’s vicinity, such as people, art exhibits, and products for sale, 

together with useful details and an indication of their relevance. For instance, the second query 

indicates the interests of people (implied by their groups) and returns informal contact information 

(chat accounts); the fourth query returns the displayed art pieces, as well as the time period and 

venue in which each exhibit takes place; and the final query returns products in an affordable price 

range, accompanied by useful consumer data (e.g., manufacturer, user comments). The queries can 

be found in Appendix B, as well as on http://wise.vub.ac.be/william/phd/index.htm#experiments. 

5.1.4 Methodology 

Each individual experiment evaluates a particular aspect of the approach; i.e., a query service 

component, or the impact of removal strategies or OWA features on a component. All experiments 

include the Source Encounter phase, where sources from the experiment’s dataset are retrieved and 

processed, and Data Query phase, where the experiment’s queries (see section 5.1.3) are executed 

http://wise.vub.ac.be/william/phd/index.htm#experiments
http://wise.vub.ac.be/william/phd/index.htm#experiments
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on the encountered dataset. During the Source Encounter phase, the query service encounters all 

5000 dataset sources, unless stated otherwise (e.g., fewer sources are encountered in case of 

memory issues). It should further be noted that, when evaluating the effect of the OWA features on 

the query service components, we only show experiment results for the component variant that 

performed best in general. In those cases, we clearly indicate which component variant is used in the 

experiment.  

Below, we discuss other points pertaining to the experiment methodology, including measurement 

methods, component configurations, and data retrieval.  

5.1.4.1 Measurement methods 

In this section, we discuss how performance times and memory usage were measured during the 

experiments. 

Performance times: In order to minimize the effect of external factors influencing execution times 

(i.e., external / OS processes such as garbage collection), the experiments were run five times and 

the average times are shown. Note that experiments involving the OWA features took an exceedingly 

long time to execute, as can be seen from the experiment results (see section 5.5). Because of these 

very high execution times, and the fact that these experiment results only serve to indicate 

performance overhead (i.e., they are not used to determine better-performing components), the 

OWA experiments were only performed once. 

Memory usage measurements: In order to accurately measure memory usage, snapshots were taken 

of the Android Java heap at runtime (using the Android API), and analyzed using the Eclipse Memory 

Analysis tool96. We show the retained heap size of the relevant classes, as well as the dictionary-

encoder component (see Chapter 4, section 4.7.1.1). Note that for the Source Encounter phase, we 

typically show multiple memory usage results, whereby each result was measured after a certain 

number of sources were encountered during the phase.  

JRE experiment results: It should be noted that, aside from the Android implementation, the mobile 

query service was also implemented for Java Runtime Environment (JRE) v. 6 (Java Development Kit 

(JDK) v. 1.6.0). Both query service versions are based on a shared Java code base, whereby each 

version adds platform-specific classes and libraries (e.g., RDF, Bluetooth libraries). Initially, the JRE 

mobile query service was implemented for easier debugging during development. In our 

experiments, the JRE version was used in case an experiment failed on the Android device (due to 

limited memory) but still yielded interesting results, for instance regarding data selectivity or 

memory usage. We clearly indicate when this is the case.  
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5.1.4.2 Component configuration 

In this section, we detail the configuration of the query service components for our experiments. 

Cache memory and storage usage: The cache components are configured to use up to 75% of the 

total dataset size as persistent storage, and 8Mb volatile memory space for storing cached data97 

(called payload). We elected to specify an upper limit for the persistent storage, since a user likely 

does not want the cache to consume the entire mobile device storage. The relatively low in-memory 

limit was chosen since other parts and components also consume memory (e.g., Androjena RDF 

graphs), and the limit only covers the cached payload. 

Resource indices: When applying the OWA type mediation feature, information on RDF resources 

such as types and origin sources needs to be indexed (see Chapter 4, section 4.7.3.1). In our 

experiments, we evaluate a default resource index that utilizes a single hash table for indexing 

resources, called default resource index; and a multi-level resource index, which swaps index data to 

persistent storage to save memory. The multi-level index is configured to contain two levels, keeping 

n second-level indices in-memory and utilizing a persistent SQLite database. The n value indicates a 

balance between memory and performance overhead; less indices kept in-memory (i.e., lower n 

value) result in less memory usage, but incur higher persistent read and write times. We chose the 

following n values, based on test results; for the SIM, n = 10 (i.e., 10 second-level indices are kept in-

memory), and for Meta Cache, n = 100 (in case n = 10 is set for Meta Cache, runtime overhead 

becomes impractically high). We chose to keep two levels in the multi-level index, corresponding to 

the structure of URI keys (i.e., domain / local name); the first level indexes on URI domain, and the 

second level on local name.  

5.1.4.3 Data retrieval 

This section elaborates on how data (e.g., RDF files, ontologies) is retrieved in our experiments. 

RDF source retrieval: In order to avoid temporary disconnections or network delays to influence 

experiment results, RDF sources were not downloaded from online locations but instead retrieved 

from persistent storage. Afterwards, the persistent retrieval times were substituted by average 

download times. The latter were obtained by downloading 1000 random sources from their online 

location, over 5 runs, and calculating the average times. Clearly, temporary network disconnections 

and delays will occur in real-world environments. On the other hand, the goal of these experiments is 

to evaluate the performance and memory usage of mobile query service components when handling 

large amounts of data, as well as the influence of component features on data access. Evaluating the 

impact of network properties, as well as other mobility-related issues such as battery consumption, is 

not included in the presented experiments and considered future work.  

Ontology Manager: In the same vein, all referenced ontologies were stored locally for later use by 

the Ontology Manager (see Chapter 4, section 4.6.1). Although the Ontology Manager supports 
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dynamically downloading ontologies, this automatic download mechanism has its drawbacks: many 

ontologies do not adhere to the linked data principles, and cannot be obtained by simply de-

referencing their URIs; while some ontologies also take a long time to download, due to their 

particular hosting server. In order to avoid these issues influencing our experiments, ontologies are 

retrieved from persistent storage when referenced. We found online ontologies for a total of 191 

namespaces referenced in the RDF sources and queries. 

5.2 Experiment 1: Source Index Model 
This section presents the experiment evaluating the Source Index Model. In this experiment, we 

consider three different SIM variants, each keeping an increasing amount of metadata: SIM1 

(predicates), SIM2 (predicates and subject types), and SIM3 (predicates, subject, and object types).  

In section 5.2.1, we present the experiment results. This includes the memory and computational 

overhead of each SIM variant during the Source Encounter phase, and the data access efficiency 

supplied during the Data Query phase. In section 5.2.2, we study these results in more detail. 

5.2.1 Experiment 1: Results 

This section shows the results of the Source Index Model experiment during the Source Encounter 

(section 5.2.1.1) and Data Query (section 5.2.1.2) phases. 

5.2.1.1 Source Encounter phase 

In this section, we show the experiment results of the Source Index Model variants during the Source 

Encounter phase. Table 5-1/a shows the memory sizes taken up by the SIM variants, measured each 

time an additional 1000 sources were encountered. Specifically, we show the collective retained 

heap size of the implementing SIM class, together with the dictionary encoder (see section 5.1.4.1). 

The computational overhead to maintain the SIM is shown in Table 5-1/b, and includes average times 

of downloading a source, extracting the source metadata and adding the metadata to the SIM.  

#sources 

(size) 

SIM1 SIM2 SIM3 

1000 (81Mb) 360 2566 4137 

2000 (200Mb) 597 3859 6142 

3000 (336Mb) 846 5220 8163 

4000 (442Mb) 1063 5663 8725 

5000 (526Mb) 1235 5882 8986 
 

 

 SIM1 SIM2 SIM3 

extract & add 178 286 482 

download 301 

total 479 587 783 

(a) Memory size (Kb)             (b) Avg. processing times / source (ms) 

Table 5-1. SIM – Source Encounter phase. 
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5.2.1.2 Data Query phase 

This section shows the Source Index Model experiment results during the Data Query phase. Table 

5-2 illustrates the source selectivity by showing the number of identified query-relevant sources for 

each of the five experiment queries (see section 5.1.3). The table also shows the number of results 

per query, which are the same for each SIM variant. Tables 5-3 to 5-5 show the total query execution 

times, which include query analysis time (analyze), source identification time (id), data collection 

(collect) and query execution times (execute). SIM1 fails with an out-of-memory error for the final 

two queries. Therefore, Table 5-3 does not show entries for those queries; the related selectivity 

results (see Table 5-2) were obtained via the JRE version of the query service. The case where no SIM 

is employed (i.e., native query engine performance) fails with this error for any query, so again no 

data is available. 

query SIM1 SIM2 SIM3 # query results 

Q1 2116 254 254 4 

Q2 313 305 272 272 

Q3 1293 319 319 319 

Q4 1984 87 87 77 

Q5 2146 256 256 148 

Table 5-2. SIM – Data Query phase: Source selectivity (#sources). 

 

 

 

 

 

 

 

 

 

Table 5-3. SIM – Data query phase (SIM1): Query execution times (ms). 

 

 

 

 

 

 

SIM1 

query analyze id collect execute total 

Q1 34 2344 1055884 22253 1080515 

Q2 11 23 156187 583 156804 

Q3 10 1042 645207 1490 647749 

Q4 53 2333 - - - 

Q5 87 3228 - - - 
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Table 5-4. SIM – Data query phase (SIM2): Query execution times (ms). 

 

 

 

 
 

 

 
 

 

Table 5-5. SIM – Data query phase (SIM3): Query execution times (ms). 

5.2.2 Experiment 1: Discussion 

In the sections below, we investigate and discuss the SIM experiment results during the Source 

Encounter (section 5.2.2.1) and Data Query phase (section 5.2.2.2).  

5.2.2.1 Source Encounter phase 

The Source Index Model is responsible for identifying query-relevant online information, in order to 

minimize source downloads and reduce the final query dataset. Note that in the experiment, the SIM 

was used individually, without a cache component to locally cache source data. In the next section, 

we discuss experiment results when the SIM is used in combination with a local cache. 

As expected, Table 5-1/a shows that the memory space taken up by the SIM increases as more 

metadata is kept; whereby SIM3 yields the largest memory overhead. We observe that the memory 

size of any SIM variant corresponds to only a small fraction of the total dataset; the largest variant, 

SIM3, stores around 1,7% for 5000 sources. For instance, the largest SIM (ca. 8,8Mb) fits easily into 

the smallest Android heap size (16Mb)98. This adheres to our requirement of reducing memory usage 

                                                           
98

 The available heap size depends on the specific device and Android version; to our knowledge, the smallest 
available heap size is currently 16Mb. 

SIM2 

query analyze id collect execute total 

Q1 67 183 126746 1354 128350 

Q2 8 24 152195 472 152699 

Q3 7 73 159181 655 159916 

Q4 8 13 43413 207 43641 

Q5 13 192 127744 35878 163827 

SIM3 

query analyze id collect execute total 

Q1 68 230 126746 1464 128508 

Q2 10 19 135728 398 136155 

Q3 8 107 159181 761 160057 

Q4 10 19 43413 173 43615 

Q5 18 293 127744 39731 167786 
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(see Chapter 4, section 4.2). On the other hand, we observe the SIM could exceed the memory limit 

in case larger amounts of sources are encountered. In fact, when applying the type inferencing 

feature (see section 5.5) and enabling all its options, the resulting SIM size already exceeds the 

maximum heap space for 5000 sources (see Table 5-22/a; +subclass column). In order to cope with 

this, parts of the SIM can be swapped to persistent storage, incurring a large performance overhead 

(as illustrated by our persistent-swapping, multi-level resource index; see section 5.5).  

The computational overhead of extracting and adding data to the SIM (see Table 5-1/b) is reasonable 

compared to the average download time. This complies with our requirement for minimal 

computational overhead. In line with expectations, this overhead increases as more metadata needs 

to be extracted; whereby SIM3 shows the largest processing overhead. It should be noted that we 

initially executed predefined SPARQL queries to extract the required source metadata (predicates, 

subject/object types). This was feasible in previous experiments [86, 93], where the experiment 

dataset was partially synthetic. However, this extraction method proved problematic for our real-

world dataset, where relatively large files (e.g., 3,5Mb) resulted in huge extraction times (e.g., 31s). 

On average, files in our real-world dataset contain much more distinct metadata than in our previous 

datasets, leading to much larger extraction times. To resolve this issue, we implemented an iterator 

class that dynamically parses RDF data (N-Triple format) as new statements are requested (see 

Chapter 4, section 4.7.1.2). Via this iterator, we reduced the metadata extraction time on average by 

a factor 10. 

In conclusion, we observe that while the computational and storage overhead rises with the 

complexity of the SIM, the overhead is still acceptable. As such, the SIM component complies with 

our requirements of reducing memory usage and processing effort. 

5.2.2.2 Data Query phase 

Conforming to expectations, the source selectivity (see Table 5-2) increases with the amount of kept 

metadata. The selectivity of SIM1 is so poor that an out-of-memory error occurs when assembling 

the sources for the last two queries (see Table 5-3). A scenario where the final query dataset includes 

all sources, equivalent to native query engine performance (i.e., without SIM support), proved to be 

entirely unfeasible as it led to out-of-memory exceptions for all queries. 

It can be observed that SIM2 and SIM3 rule out a large number of sources (95% on average). 

Focusing on the individual selectivity results, we only observe a difference in selectivity between 

SIM2 and SIM3 for the second query (Q2; see Appendix B.1.1). This query restricts the object types of 

each triple pattern, meaning SIM3 can utilize the richer search constraints to increase selectivity. On 

the other hand, Tables 5-4 and 5-5 show that SIM2 and SIM3 both still incur a very high query 

execution overhead. As indicated by the results, most of this overhead occurs during the collection 

step, which involves downloading the sources and integrating all source data into a single queryable 

Androjena RDF graph (which also requires parsing the data). It can be noted that such overheads are 

unavoidable for an indexing solution deployed without caching support, since all query-relevant 



 
 
 
Experimental validation  177 
 

sources need to be downloaded as a whole and integrated. In fact, the Androjena library was already 

extended for efficiently combining RDF graphs (see Chapter 4, section 4.7.1). By additionally 

employing a cache for locally storing downloaded data, the collection overhead can be significantly 

reduced, as we illustrate in section 5.3. Finally, regarding the query execution times (execute column; 

this involves executing queries on the already collected data), our experiments show that these times 

are mostly bound by query complexity, as the SIM2 and SIM3 execution times are similar to the 

query execution times incurred by Meta Cache (we shortly revisit this issue in section 5.3.2.2). 

We conclude that executing queries on online semantic datasets is made feasible via the SIM, as the 

native query engine, without SIM support, fails for any query due to out-of-memory exceptions. The 

SIM variants utilizing increased amounts of source metadata, namely SIM2 and SIM3, represent the 

best solutions. As such, these SIM variants confirm that source metadata indeed enables a balance 

between fine-grained data retrieval on the one hand, and memory and processing requirements on 

the other. At the same time however, we observe that in case the SIM is deployed individually, 

without any caching support, the total execution time is impractically high; ranging from around 1-3 

minutes for SIM2 and SIM3. In order to improve performance and reduce the data collection 

overhead, the SIM should be combined with a caching system.  

5.3 Experiment 2: Cache 
In this section, we present the experiment evaluating the cache components. We evaluate and 

compare two cache organizations: Source Cache, which organizes cached data based on origin 

source; and Meta Cache, which groups cached data according to their shared metadata. The Meta 

Cache performs both the online source identification and local caching tasks, and is thus deployed 

autonomously. For Source Cache, the best performing SIM variant (SIM3) is utilized to identify query-

relevant online sources. Furthermore, the general-purpose LRU removal strategy was applied to both 

caches. Section 5.4 shows the effects of applying different removal strategies. 

Section 5.3.1 shows the experiment results, summarizing the memory and processing overhead of 

the cache organizations during the Source Encounter phase, as well as the query execution 

performance during the Data Query phase. Section 5.3.2 investigates the results in more detail. 

5.3.1 Experiment 2: Results 

This section presents the results of the cache experiment during the Source Encounter (section 

5.3.1.1) and Data Query (section 5.3.1.2) phases. 

5.3.1.1 Source Encounter phase 

This section shows the experiment results for the two caches during the Source Encounter phase. In 

Tables 5-6 and 5-7, we show the in-memory and persistent storage spaces respectively used by the 

Source and Meta Cache, measured each time an additional 1000 sources were encountered. The 

total memory space includes the retained heap sizes of the cache store and cache unit objects, 
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together with the dictionary encoder. We separately indicate the measured payload size, which 

comprises the heap size of the cache units (not including e.g., indices), and offset this value to the 

estimated payload size (shown between brackets). The measured payload size was obtained via 

snapshots of the Android Java heap (using the Android API; see section 5.1.4.1) and accurately 

reflects the memory usage. On the other hand, the estimated payload size is approximated at 

runtime to dynamically manage memory space (see Chapter 4, section 4.7.2.3). For ease of 

reference, Table 5-6 includes the corresponding SIM sizes, as the Source Cache is used together with 

the Source Index Model. The second part of the table shows the composition of the cache, which 

includes the total number of cache units, together with the number of in-memory, persistent and 

removed units. 

Source Cache 

 

#sources 

(size) 

sizes (Kb) composition (# units) 

in-memory  

persistent 

 

total 

 

in-memory 

 

persistent 

 

removed SIM cache payload 

1000  

(81Mb) 

4137 6249 

 

6027 

(8192) 

56849 1000 44 956 0 

2000  

(200Mb) 

6142 6580 

 

6130 

(8192) 

153515 2000 45 1955 0 

3000  

(336Mb) 

8163 6847 

 

6226 

(8192) 

286911 3000 45 2955 0 

4000  

(442Mb) 

8725 7223 

 

6322 

(8192) 

395542 4000 45 3955 0 

5000  

(526Mb) 

8986 7291 

 

6323 

(8192) 

395776 5000 45 3968 987 

Table 5-6. Source Cache – Source Encounter phase: Sizes and compositions. 
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Meta Cache 

 

#sources 

(size) 

sizes (Kb) composition (# units) 

in-memory  

persistent 

 

total 

 

in-memory 

 

persistent 

 

removed total payload 

1000  

(81Mb) 

15780 

 

12092 

(6660) 

61454 10531 805 9726 0 

2000  

(200Mb) 

21783 

 

15228 

(8192) 

162468 15552 1902 13650 0 

3000  

(336Mb) 

28270 

 

17846 

(8191) 

278579 22439 871 21568 0 

4000  

(442Mb) 

31870 

 

18540 

(8191) 

369703 23590 836 22754 0 

5000  

(526Mb) 

37125 

 

17708 
(8079) 

394351 24068 926 11952 11190 

Table 5-7. Meta Cache – Source Encounter phase: Sizes and compositions. 

In Tables 5-8 and 5-9, we show the average computational overhead during the Source Encounter 

phase, resulting from adding the data to the cache (add column) and performing the replacement (or 

removal) function in case the cache is full. The Source Cache incurs an extra overhead of updating 

the SIM, which is used to identify query-relevant cached sources during the Data Query phase. 

Additionally, since the Source Cache stores Androjena RDF graphs as payload (see Chapter 4, section 

4.7.2.5), the add time for Source Cache also includes loading the source data into an Androjena RDF 

graph (creation time shown between brackets). Meta Cache incurs two extra overheads; namely, 

extracting metadata from source triples, and updating existing cache units.  

Source Cache 

insert  

replacement 

 

total SIM update add total 

517 253 (198) 770 2212 2982 

Table 5-8. Source Cache – Source Encounter phase: Avg. processing times / source (ms). 
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Meta Cache 

insert  

replacement 

 

total extract add update total 

830 140 536 1506 804 2310 

Table 5-9. Meta Cache – Source Encounter phase: Avg. processing times / source (ms). 

5.3.1.2 Data Query phase 

In this section, we show the experiment results for the Source Cache and Meta Cache during the 

Data Query phase. Tables 5-10 and 5-11 show the total query execution times. The following parts 

are distinguished: 1) query analysis, which includes extracting search constraints; 2) cache access, 

which comprises retrieving cached data and downloading missing sources; 3) data assembly, which 

involves collecting retrieved triples into a final RDF graph for querying; and 4) query execution, 

where the query is executed on the assembled RDF graph. In more detail, the cache access time is 

divided into 1/ cache retrieval time, which includes accessing indices and loading persistently stored 

data; and 2/ cache miss time, which are incurred on a cache miss whereby missing source data needs 

to be re-downloaded. Also, the data assembly part shows the total number of returned triples 

(including triples resulting from cache misses), illustrating the data retrieval fine-graininess. For Meta 

Cache, the amount of extra type statements, which are required to make the types of cached 

resources explicit in the query graph, is shown between brackets99 (see Chapter 4, section 4.7.2.6). 

Finally, the total execution time, including all the constituent times, is also shown. 

Source Cache 

 

query 

query  

analysis 

cache access assemble data query  

execution 

 

total retrieval miss # triples time 

Q1 314 21661 0 25364 2139 1739 25853 

Q2 12 1346 76153 31706 1575 585 79671 

Q3 13 22888 0 24396 1517 823 25241 

Q4 19 12274 0 13295 1113 243 13649 

Q5 184 14937 0 13392 736 50713 66570 

Table 5-10. Source Cache – Data Query phase: Query execution (ms). 
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 It should be noted that these type statements may include duplicates (in case the resource occurs in multiple 
cache units). 
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Meta Cache 

 

query 

query  

analysis 

cache access assemble data query  

execution 

 

total retrieval miss # triples time 

Q1 198 

 

8023 

 

28373 

 

1592 

(19597) 

3446 

 

1403 

 

41443 

 

Q2 14 

 

588 

 

3933 

 

867 

(1759) 

542 

 

749 

 

5826 

 

Q3 92 

 

2220 

 

27653 

 

1804 

(25745) 

4365 

 

757 

 

35087 

 

Q4 11 

 

598 

 

0 

 

545 

(648) 

181 

 

291 

 

1081 

 

Q5 19 

 

22 

 

0 

 

2914 

(4292) 

2562 

 

55301 

 

57904 

 

Table 5-11. Meta Cache – Data Query phase: Query execution (ms). 

Tables 5-12 and 5-13 show additional information regarding cache access. Regarding cache retrieval, 

we indicate the number of retrieved in-memory / persistent cache units; and concerning cache 

misses, we show the total number of misses, accompanied by the resulting amount of sources to re-

download between brackets. For ease of reference, we repeat the total cache retrieval and cache 

miss times. It should be noted that for Source Cache, the cache-miss time includes loading the source 

data into an Androjena RDF graph; and for Meta Cache, this time includes extracting the required 

source metadata and associated triples. For Source Cache, we also show the SIM access time.  

Source Cache 

 

query 

SIM  

access 

retrieval misses  

total # in-memory # persistent time # misses time 

Q1 216 8 246 21445 0 0 21661 

Q2 20 0 19 1326 253 (253) 76153 77499 

Q3 107 0 319 22781 0 0 22888 

Q4 21 0 87 12253 0 0 12274 

Q5 278 4 252 14659 0 0 14937 

Table 5-12. Source Cache – Data Query phase: Cache access (ms). 
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Meta Cache 

 

query 

retrieval misses  

total # in-memory # persistent time # misses time 

Q1 1 562 8023 223 (66) 28373 36396 

Q2 0 5 588 2 (7) 3933 4521 

Q3 66 125 2220 25 (74) 27653 29873 

Q4 0 6 598 0 0 598 

Q5 8 1 22 0 0 22 

Table 5-13. Meta Cache – Data Query phase: Cache access (ms). 

Table 5-14 shows the cache maintenance times resulting from cache access. This comprises 1/ 

updating the cache with new source data, in case missing data was downloaded; and 2/ running the 

removal strategy, resulting from loading cached data into memory and adding new data to the cache 

(i.e., in case of cache misses). Since cache maintenance occurs after query execution, it is not 

included in the cache access times shown in the previous tables. It should be noted that these times 

heavily depend on the employed removal strategy; see the next section (section 5.4) for a 

comparison of removal strategies. 

 

query 

Source Cache Meta Cache 

add / update replacement add / update replacement 

Q1 0 133183 36571 4790 

Q2 2157 195673 6 1 

Q3 0 82450 9635 5003 

Q4 0 105947 0 2 

Q5 0 103051 0 31 

Table 5-14. Cache – Data Query phase: Cache maintenance (ms). 

5.3.2 Experiment 2: Discussion 

In the sections below, we study and discuss the cache experiment results during the Source 

Encounter (section 5.3.2.1) and Data Query phase (section 5.3.2.2). 

5.3.2.1 Source Encounter phase 

In order to reduce data collection time, the cache is responsible for locally storing online source data. 

Note that the Source Cache is used in combination with the Source Index Model, whereby the latter 

is responsible for identifying query-relevant online sources. On the other hand, the Meta Cache is 
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used without the SIM, as it is able to perform the identification task by keeping information on 

previously removed data (“missing” data; see Chapter 4, section 4.7.2.6).  

Tables 5-6 and 5-7 summarize the cache sizes and compositions. Firstly, we observe that the payload 

size estimated at runtime (between brackets) only inaccurately reflects the actual payload memory 

size (i.e., heap space occupied by cache units). Due to the lack of accurate and efficient runtime 

memory measurement support on Android, a rough estimation of the payload has to be made, 

whereby for instance object sizes are not considered (see Chapter 4, section 4.7.2.6). The difference 

is largest in case of Meta Cache, which is to be expected since more objects are kept (see 

composition). Because of this, the actual in-memory payload may exceed the specified memory limit. 

Devising a better way to estimate actual memory usage is future work. 

As can be seen from the tables, the total memory usage of Meta Cache is larger than Source Cache, 

even when including the SIM memory space for the latter cache. Meta Cache includes three indices 

instead of just one, and the indices themselves are also much larger; where the Source Cache only 

indexes source URLs, Meta Cache indexes on each metadata part (i.e., predicate, subject/object 

types). Additionally, Meta Cache keeps much more cache unit objects with their accompanying 

memory overhead (see composition part). This extra memory consumption, not counting concrete 

payload, amounts to ca. 0,2% for Source Cache, and 3,6% for Meta Cache, of the total dataset size 

(5000 sources). The total occupied memory space amounts to ca. 7% of the total dataset size for 

Meta Cache, and 3% for Source Cache (also counting the SIM). Since the total memory usage by both 

caches is significantly lower than the maximum heap space (64Mb), this still adheres to the 

requirement of reduced memory usage. To avoid the cache exceeding the available memory space 

for large amounts of data, index data can be swapped to persistent storage, which however incurs a 

large performance penalty (as exemplified by our multi-level resource index; see section 5.5). In 

addition, a more accurate estimation of memory usage could be devised, making sure the actual in-

memory payload does not exceed the defined memory limit.  

Regarding composition, the Meta Cache contains a total of 24068 cache units, each of which 

corresponds to a unique metadata combination. It can further be observed that the number of in-

memory cache units decreases when considering composition results after encountering 2000 and 

4000 sources, while the defined memory limit remains the same. As increasing amounts of source 

data are being encountered, it becomes more likely that new source data shares the same metadata 

as previous source data. Therefore, existing cache units will be updated rather than new ones 

created, meaning existing cache units increase in size over time. As a result, the total number of 

cache units will decrease given the same memory limit. For Source Cache, each cache unit 

corresponds to a source, thus adding up to 5000 cache units (including removed ones).  

Tables 5-8 and 5-9 show the processing overhead. Even when including the SIM update cost for 

Source Cache, the overall cost of inserting cached data, including extraction, add and update times, is 

higher for Meta Cache. The extraction process takes up the bulk of the insertion time (ca. 55%), 

which involves extracting source triples together with their metadata. As mentioned before (see 
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section 5.2.2.1), the source metadata extraction process was already optimized by a factor of 10 on 

average. Additionally, inserting a single source into Meta Cache may require updating multiple units; 

in case these units are persistently stored, the new data is immediately pushed to persistent storage, 

increasing update time. In case of Source Cache, the Androjena RDF graph creation time (shown 

between brackets) represents the largest part of the add time. This extra step allows improving the 

data combination time during the Data Query phase (see Chapter 4, section 4.7.2.5). When 

disregarding this graph creation overhead, the add time amounts to less than for Meta Cache, which 

is to be expected since less indices need to be updated. At the same time, we observe that cache 

replacement is less costly for Meta Cache. The Meta Cache keeps smaller and more fine-grained 

cache units, leading to smaller storage and removal times. Moreover, smaller cache units also allow 

the actual memory usage to be kept closer to the memory limit. Overall, we note that the 

performance overhead of both caches is relatively high compared to the Source Index Model, 

especially due to the extraction and memory management times. 

We conclude that, as expected, utilizing a cache component significantly increases memory usage 

and processing effort, thus reducing adherence to the requirement of reducing 

memory/performance overhead. Due to more elaborate indices and increased object count, Meta 

Cache occupies more memory than the Source Cache – SIM solution, and incurs higher insertion 

times. On the other hand, due to the fine-graininess of the kept cache units, replacement times are 

lower for Meta Cache. In the end however, given their benefits during the Data Query phase (see 

next section), the memory and performance overheads of both caches are still acceptable. 

5.3.2.2 Data Query phase 

Tables 5-10 and 5-11 show the overall execution times and their constituent times. Firstly, we 

observe that the execution times are much lower compared to when the Source Index Model (SIM3) 

is employed individually. In case the SIM is used together with the Source Cache, overall execution 

times are decreased by (avg.) ca. 67%. If Meta Cache is employed, execution times are reduced by 

(avg.) ca. 81%. Below, we study the results in more detail, and compare Meta Cache to Source Cache 

performance. 

At a first glance, we observe that Meta Cache retrieves data in a much more fine-grained way than 

Source Cache (see #triples column), leading to much lower cache retrieval times. As such, Meta 

Cache adheres to our requirement of fine-grained data retrieval. On the other hand, cache misses 

pose problems for both caches (see miss sub column). We detail these cache access issues in the 

paragraph below. Regarding data assembly, the average data combination time for Source Cache is 

lower than for Meta Cache (ca. 1,4s vs. 2,2s), which seems unintuitive since more data needs to be 

combined. However, as mentioned (see section 5.3.2.1), Source Cache keeps cached source data in 

Androjena RDF graphs, which can be combined very efficiently. In case of Meta Cache, the retrieved 

cached triples are added one-by-one to the final query graph, increasing collection overhead. The 

data assembly column for Meta Cache also includes the number of extra required types (between 

brackets) for the cached resources in the final query graph. Adding these types is also included in the 
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assembly time. In our experiments, we observe the separate query execution times are mostly bound 

by the query complexity; while the final query dataset for most queries is much smaller for Meta 

Cache, the individual query execution times (i.e., time required to execute the query on the already 

collected dataset) remain more or less the same for both cache organizations. We made a similar 

observation for the SIM (see section 5.2.2.2). 

Looking in more detail at the cache access results (see Tables 5-12 and 5-13), we note that most 

query-relevant cache units need to be loaded from persistent storage, since most cache units are 

stored persistently (in either cache organization) due to the relatively low in-memory limit. However, 

due to the course-graininess of data retrieval for Source Cache (i.e., per source), a lot of data 

irrelevant to the query needs to be loaded as well, leading to much larger retrieval times. Although 

cache misses cause serious overhead for both cache organizations, they have the potential to be 

worse for Meta Cache. For instance, in case of queries 2 and 3, the number of source re-downloads 

resulting from a cache miss is significantly higher than the total amount of cache misses. This is a 

direct result from the Meta Cache organization; when a cache unit is removed and later referenced 

again (cache miss), all sources containing the associated metadata need to be re-downloaded. In case 

the metadata is contained in a large number of sources, source re-download times thus become very 

high. In fact, the overhead resulting from cache misses for queries 1 and 3 leads to the overall cache 

access times to be larger for Meta Cache than for Source Cache. 

Finally, Table 5-14 shows the cache maintenance times associated with cache access. Corresponding 

to our observations during the Source Encounter phase (see section 5.3.2.1), replacement times are 

exceedingly high for Source Cache. For Meta Cache, the times range from several milliseconds to ca. 

5s; while for Source Cache, these range from ca. 1,4m to 3,3m.  More course-grained cache units are 

kept by the Source Cache, yielding larger storage and removal times in case memory space needs to 

be cleared.  

In conclusion, utilizing a local cache yields significantly increased querying performance, which more 

than compensates for the additional performance overhead during source processing. When 

comparing both caches, Meta Cache retrieves cached data in a much more fine-grained way, 

resulting in much lower data collection times and thus better overall execution times. While the SIM 

makes executing queries on large online datasets feasible, Meta Cache thus makes querying large 

online datasets much more efficient and realistic. As before, Meta Cache confirms that focusing on 

source metadata enables a balance between fine-grained data retrieval and memory/processing 

overheads. At the same time, cache misses have the potential to cause huge problems for Meta 

Cache (resulting in serious performance decrease for some queries). This issue was also observed in 

previous work [86]. In the section 5.4, we evaluate a removal strategy aiming to reduce this problem. 
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5.4 Experiment 3: Removal strategies 
This section presents the experiment that evaluates the impact of two removal strategies on Meta 

Cache, namely Least-Recently-Used and Least-Popular-Sources. Since the source-based Least-

Popular-Sources strategy is only applicable on caches that do not organize their data via origin 

source, the Source Cache is not included in this experiment. The first removal strategy, Least-

Recently-Used (LRU), assumes a temporal locality indicating that items that have been recently 

referenced will likely be referenced again. The second removal strategy, Least-Popular-Sources (LPS), 

considers the “popularity” of the source in the cache (see Chapter 4, section 4.5.2.2). Note that the 

download cost of sources can also be taken into account; however, since we aim to avoid network 

issues (i.e., disconnections or delays) influencing our experiment results (see section 5.1.4.3), we do 

not consider download times for the purposes of this experiment. Finally, as a source-based removal 

strategy, the LPS strategy removes data per origin source, which involves decoupling the units of 

storage, retrieval and removal (see Chapter 4, section 4.7.2.10). Because of this decoupling, 

persistently stored data may be grouped (clustered) in different ways, namely via retrieval unit (i.e., 

shared metadata; called retrieval-level) or removal unit (i.e., origin source; called removal-level); each 

with their effects on performance.  

Section 5.4.1 shows the performance of both removal strategies during the Source Encounter phase, 

and the effect of the removal strategies on the Data Query phase. Furthermore, the effect of the 

different data clustering techniques on the performance of the LPS strategy is indicated. In section 

5.4.2, we investigate and discuss the experiment results in more detail. 

5.4.1 Experiment 3: Results 

This section shows the results of the removal strategies experiment during the Source Encounter 

(section 5.4.1.1) and Data Query (section 5.4.1.2) phases. 

5.4.1.1 Source Encounter phase 

In this section, we show the experiment results for the two removal strategies during the Source 

Encounter phase. Table 5-15 shows the in-memory sizes taken up by Meta Cache for both removal 

strategies, measured each time an additional 1000 sources were encountered. We differentiate 

between the retained heap size of the payload, which includes the concrete payload data as well as 

storage and retrieval unit objects; and the size of the removal strategy, comprising the removal units 

and removal strategy itself. Storage units are responsible for keeping the actual payload, while 

retrieval units are returned by a cache store in response to a lookup. Removal units are persistently 

stored or removed by the memory management process in case memory is full (see Chapter 4, 

section 4.7.2.7). Note that the total space shown also includes other components not separately 

displayed here (e.g., dictionary encoder, cache store).  
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LRU – Meta Cache LPS – Meta Cache 

#sources 

(size) 

in-memory sizes in-memory sizes 

total payload removal total payload removal 

1000 (81Mb) 15780 12092 796 19504 15782 830 

2000 (200Mb) 21783 15228 1283 26046 19278 1496 

3000 (336Mb) 28270 17846 1668 35257 24556 1945 

4000 (442Mb) 31870 18540 1733 40137 26206 2334 

5000 (526Mb) 37125 17708 1112 45975 27905 2325 

Table 5-15. Removal strategies – Source Encounter phase: Sizes (Kb). 

Table 5-16 shows the cache composition after encountering 5000 sources, focusing on the missing 

data. A missing key represents a metadata combination of which the associated source data was 

previously removed. In case the key is referenced again (cache miss), the removed sources need to 

be re-downloaded (see Chapter 4, section 4.7.2.6). The table shows the total number of missing keys, 

together with the total number of sources to be re-downloaded (or missing sources), in the cache. 

Furthermore, it illustrates the distribution of required source re-downloads across the missing keys. 

In particular, we show the number of missing keys associated with a certain range of missing source 

amounts, namely 1-10, 10-50, 50-100, 100-250 and 250-500. For instance, a missing key in range 1-

10 incurs 1-10 source re-downloads in case the missing key is referenced (cache miss). For LPS, we 

show the results for different weightings of the popularity factors used in the removal value 

calculation; whereby f1 stands for the popularity of the source data, and f2 for the popularity of the 

source metadata. These weightings were obtained by either considering only one of the two factors, 

or the sum of both factors, whereby the impact of one factor is potentially reduced (i.e., divided by a 

power of 10). Note that since factor f1/100 + f2 yields the same results as when f1 is not considered, 

it is not shown in the table.  
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strategy 

#missing 

keys 

#missing 

sources 

 

missing sources distribution 

LRU 11058 1084 1-10: 10854 10-50: 196 50-100: 1 

100-250: 6 250-500: 1  

LPS 

  f1+f2 9322 819 1-10: 9232       10-50: 82 50-100: 8   

100-250: 0  250-500: 0  

  f1 741 1586 1-10: 643 10-50: 60 50-100: 4 

100-250: 21  250-500: 7  

 f1+f2/100 961 1049 1-10: 857 10-50: 86  50-100: 4 

100-250: 11  250-500: 3  

  f1+f2/10 2061 752 1-10: 1967 10-50: 85 50-100: 3 

100-250: 6 250-500: 0  

  f2 10314 785 1-10: 10224 10-50: 82 50-100: 8 

100-250: 0 250-500: 0  

  f1/10+f2 10266 792 1-10: 10176 10-50: 82 50-100: 8 

100-250: 0 250-500: 0  

Table 5-16. Removal strategies – Source Encounter phase: Missing data. 

In Table 5-17, we summarize the cache maintenance overhead in the Source Encounter phase. The 

table only shows the overhead of running the removal strategy, since the extraction, add and update 

operations (see Table 5-9) are not influenced by the utilized removal strategy. For the LPS strategy, 

we show the experiment results for both data clustering techniques (i.e., retrieval-level and removal-

level) and with the f1 + f2/100 popularity factor weighting, since this struck the best balance 

between the number of missing keys and sources to be re-downloaded. 

LRU LPS 

 removal-level retrieval-level 

829 1496 1799 

Table 5-17. Removal strategies – Source Encounter phase: Replacement times / source (ms). 

5.4.1.2 Data Query phase 

In this section, we show the effects of the two removal strategies on the Data Query phase. Tables 5-

18 and 5-19 show the only time influenced by the chosen removal strategy, namely the cache access 

time. This time is further broken down into 1/ cache retrieval time, involving accessing indices and 

loading persistently stored data; and 2/ cache miss time, incurred on a cache miss whereby removed 
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source data needs to be re-downloaded. The resulting total execution time is also shown (note that 

this total time also includes other constituent times, such as executing the query on the collected 

data, which are not shown here).  

For cache retrieval, we show the total number of retrieved cache elements. In case of LPS, each 

retrieved cache element (retrieval unit) will require loading one or multiple cache units (storage 

unit). Therefore, Table 5-19 also indicates the number of loaded cache units between brackets. In 

addition, the table shows retrieval times for each tested clustering technique; whereby removal-level 

is indicated by t(a) and retrieval-level by t(b). Regarding cache misses, both tables 5-18 and 5-19 

show the total number of misses, accompanied by the resulting amount of sources to re-download 

(between brackets). Note that, for LPS, we show the cache misses associated with the f1 + f2/100 

popularity factor weighting, which turned out to strike the best balance between the number of 

missing keys and sources to be re-downloaded (see Table 5-16). 

LRU – Meta Cache 

 

query 

retrieval misses  

cache access 

 

total #retrievals time #misses time 

Q1 563 8023 223 (66) 28373 36396 41443 

Q2 5 588 2 (7) 3933 4521 5826 

Q3 191 2220 25 (74) 27653 29873 35087 

Q4 6 598 0 0 598 1081 

Q5 9 22 0 0 22 57904 

Table 5-18. LRU – Data Query phase: Cache access and query execution (ms). 

LPS – Meta Cache 

 

query 

retrieval misses cache access total 

#retrievals t(a) t(b) #misses time t(a) t(b) t(a) t(b) 

Q1 784 (935) 13017 17603 5 (5) 1560 14601 19163 21042 25870 

Q2 6 (272) 4560 878 0 0 4560 878 6127 2203 

Q3 216 (957) 11475 4477 0 0 11475 4477 17429 10924 

Q4 6 (467) 5915 579 0 0 5915 579 6439 1404 

Q5 9 (2146) 26488 4043 0 0 26488 4043 95538 76370 

Table 5-19. LPS – Data Query phase: Cache access and query execution (ms). 

Table 5-20 shows the number of cache misses for different weightings of the LPS popularity factors. 

The total number of cache misses is shown for each query, while the resulting number of source re-
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downloads is shown between brackets. Results for factor f1/100 + f2 are not shown, since it yields 

the same results as when f1 is not considered. 

LPS – Meta Cache 

query f1+f2 f1 f1+f2/100 f1+f2/10 f2 f1/10+f2 

Q1 68 (26) 1 (1) 5 (4) 33 (16) 79 (28) 75 (27) 

Q2 0 1 (156) 0 0 0 0 

Q3 111 (74) 0 0 6 (2) 111 (72) 111 (72) 

Q4 6 (3) 0 0 0 6 (3) 6 (3) 

Q5 0 0 0 0 0 0 

Table 5-20. LPS – Data Query phase: Cache misses. 

Finally, Table 5-21 shows the removal strategy times resulting from cache access. During cache 

access, the loading of cached data, and adding of new data due to cache misses, may cause the in-

memory limit to be exceeded; thus necessitating cache maintenance. We indicate the removal times 

for removal-level clustering by t(a) and retrieval-level clustering by t(b). Since maintenance occurs 

after query execution, it is not included in the cache access times shown in the previous tables.  

 

 

query 

LRU LPS 

 

replacement 

replacement 

t(a) t(b) 

Q1 4790 54703 57690 

Q2 1 170383 211477 

Q3 5003 99003 189915 

Q4 2 102507 150259 

Q5 31 947873 1075984 

Table 5-21. LPS – Data Query phase: Cache maintenance (ms). 

5.4.2 Experiment 3: Discussion 

Below, we study and discuss the experiment results when applying the removal strategies on Meta 

Cache during the Source Encounter (section 5.4.2.1) and Data Query (section 5.4.2.2) phases. 

5.4.2.1 Source Encounter phase 

Table 5-15 summarizes the relevant cache sizes. We observe that the in-memory payload size is 

larger for the LPS removal strategy. Since the units of storage and retrieval are decoupled, more 

objects need to be kept in memory (see Chapter 4, section 4.7.2.10). Furthermore, the LPS removal 

strategy itself also takes up more memory. Since the removal and retrieval units are decoupled as 
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well, this leads to additional removal unit objects; which are included in the removal strategy size. In 

addition, due to this separation, the removal strategy component also needs to keep a mapping 

between the retrieval and removal units.  

Before studying cache composition, we shortly recap the Least-Popular-Sources (LPS) strategy. This 

removal strategy is centered on the popularity of sources in the cache, and considers two factors to 

estimate this popularity. The first factor indicates the popularity of the source data itself, which is 

determined by the number of cache units containing the data. By considering this factor, less cache 

units are influenced by the removal of an individual source, thus reducing the likelihood of cache 

misses. The second factor pertains to the popularity of source metadata; i.e., how often the source’s 

metadata is found in other sources. A first goal of this factor is to further reduce the number of cache 

misses. Specifically, this assumes that popular combinations of metadata (i.e., which occur often 

across the online dataset) are more likely to be referenced by posed queries. Secondly, this factor 

should keep in check the potential number of source re-downloads per cache miss (see Chapter 4, 

section 4.5.2.2). Both factors can be weighted differently, influencing cache composition. As 

mentioned, the download cost factor is not studied in this experiment.  

Table 5-16 shows the effects of both removal strategies, LRU and LPS, on cache composition, 

whereby we tested different weightings for the two LPS factors. In particular, the table focuses on 

missing data, including the total number of missing keys and missing sources, as well as the 

distribution of required source re-downloads across the missing keys100. Regarding LPS, we observe 

that the experiment results are in line with the expectations discussed above. As more preference is 

given to factor 1 (f1), namely source data popularity, the total number of missing keys (i.e., metadata 

combinations with missing source data) is significantly reduced, compared to LRU and other factor 

weightings. As such, the likelihood of cache misses is decreased. On the other hand, when factor 2 

(f2) is preferred, namely source metadata popularity, the total number of missing sources decreases. 

At the same time, the number of sources to re-download per missing key is capped as well, as there 

are no more outliers in ranges 100-250 and 250-500. In our experiment, the f1 + f2/100 configuration 

reaches a good balance, since the number of missing keys and missing sources are relatively low. 

However, high-overhead source re-downloads are still possible, whereby 100-250 and 250-500 

sources could be re-downloaded as a result from single cache misses. By weighting both factors 

equally (i.e., f1 + f2), such problematic re-downloads are avoided; but on the other hand, the 

likelihood of cache misses is again increased, due to the increased number of missing keys. The next 

section discusses cache misses incurred by the experiment queries for different factor weightings. 

Table 5-17 shows the effect of both removal strategies on memory management. The performance 

overhead caused by LPS is larger than for LRU, and is comparable to the overhead incurred by Source 

Cache (see Table 5-8). The underlying reason remains the same (see section 5.3.2.1): since the 

removal unit in case of LPS is more coarse-grained (i.e., per origin source) than for LRU (i.e., per 

                                                           
100

 For instance, the entry “10-50: 82” indicates that 82 missing keys yield between 10 and 50 source re-
downloads. 
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metadata combination), memory management is less effective. As such, this increased memory 

management overhead results from the fact that LPS is a source-based removal strategy. Looking at 

the results for the LPS data clustering techniques, we observe that grouping data persistently per 

origin source (removal-level) is less costly than per metadata combination (retrieval-level). This was 

expected, since a single memory management operation (e.g., storage) works per origin source, likely 

incurring multiple storage operations for retrieval-level clustering (see Chapter 4, section 4.7.2.11). 

Judging from the cache compositions after applying the removal strategies, the LPS indeed allows us 

to cope with the issue of cache misses, which are problematic in case of Meta Cache. In particular, 

LPS allows reducing the likelihood of cache misses, and keeping the number of source re-downloads 

in check. On the other hand, due to the decoupling of storage, retrieval and removal units, LPS incurs 

more memory overhead. Moreover, due to its source-based nature, memory management is much 

more expensive, an issue that needs to be resolved in future work. 

5.4.2.2 Data Query phase 

Tables 5-18 and 5-19 show the component execution times influenced by the employed removal 

strategy. Table 5-19 shows the LPS results for the f1 + f2/100 factor weighting, which proved to 

present a good balance between cache misses and source re-downloads (see section 5.4.2.1). 

Furthermore, we observe that the configuration also yields the smallest number of cache misses for 

the experiment queries. Later on, we discuss cache misses incurred by different LPS factor weightings 

in more detail. Regarding cache retrieval, the LPS strategy incurs more performance overhead than 

LRU (for either data clustering technique). Due to the significantly reduced number of cache misses, 

an increased amount of cache units are retrieved, most of which need to be loaded from persistent 

storage. Moreover, due to the separation of retrieval and storage units, a single retrieval likely 

results in accessing and combining data from multiple storage units (see Chapter 4, section 4.7.2.10).  

Table 5-19 shows the number of query-relevant retrieval units, accompanied by the corresponding 

number of storage units (between brackets). Looking more closely at the retrieval times associated 

with the two data clustering techniques, we observe that the retrieval time is significantly reduced 

for the retrieval-level technique. During retrieval, persistently stored data is loaded per unit of 

retrieval, meaning only a single file needs to be loaded in case of retrieval-level clustering. However, 

for removal-level clustering, multiple files likely need to be read in order to collect all data (see 

Chapter 4, section 4.7.2.11). The amount of required read operations is illustrated by Table 5-19. For 

retrieval-level clustering, the amount of read operations corresponds to the number of retrieval 

units; for removal-level clustering, this amount equals the number of storage units. Overall, retrieval-

level clustering presents a ca. factor 2,2 performance increase during retrieval. 

Table 5-20 elaborates on cache misses incurred by LPS for different factor weightings. We observe 

that when the first factor is preferred, the number of cache misses is reduced as expected. However, 

at the same time, single cache misses may result in an exceedingly high number of sources to re-

download (e.g., f1; query 2). As more weight is given to the second factor, the number of resulting 
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source re-downloads is kept in check, while the number of cache misses increases. Finally, Table 5-21 

shows the cache maintenance times for both removal strategies. In accordance with observations 

during the Source Encounter phase (see section 5.4.2.1), the replacement times are much higher for 

the source-based LPS strategy: for t(a), ranging from ca. 54s to ca. 16m; and for t(b), ranging from ca. 

57s to 18m. More course-grained removal units need to be stored or removed, resulting in much 

higher storage and removal times in case space needs to be cleared. 

In line with observations for the Source Encounter phase, we conclude that the LPS strategy allows us 

to cope with a major problem in Meta Cache, namely cache misses. By fine-tuning the LPS factor 

weightings, we are able to influence the likelihood of cache misses, as well as the amount of required 

source re-downloads, for the experiment queries. Regarding the two LPS data clustering techniques, 

retrieval-level clustering performs much better during querying than removal-level clustering; 

making it the choice clustering technique, as significantly increased performance during querying is 

preferable to (slightly) higher source processing times. Consequently, the Meta Cache configuration 

utilizing the LPS removal strategy, with f1 + f2/100 factor weighting and retrieval-level clustering 

technique, yields the best query execution performance.  

At the same time, cache maintenance times incurred by the LPS removal strategy are problematic. 

This issue results from LPS’s source-based nature, and will need to be resolved in future work. 

Therefore, utilizing the LPS strategy at this time yields a consideration between coping with cache 

misses on the one hand, and increased cache maintenance times on the other.  

5.5 Experiment 4: OWA features 
In this section, we present the experiment evaluating the effect of the OWA features on the Source 

Index Model and local cache component. For both components, we consider the best performing 

variant / organization; respectively, SIM3 and Meta Cache. 

Section 5.5.1 shows the memory and computational overhead incurred when enabling OWA features 

during the Source Encounter phase, and the effect of the OWA features during the Data Query 

phase. The experiment results are investigated in more detail in section 5.5.2.  

5.5.1 Experiment 4: Results 

This section shows the results of the OWA features experiment during the Source Encounter (section 

5.5.1.1) and Data Query (section 5.5.1.2) phases. 

5.5.1.1 Source Encounter phase 

In this section, we show the experiment results of enabling OWA features for the SIM and Meta 

Cache components during the Source Encounter phase.  

Type inferencing can be applied in two locations: at the query side (@query-side) and at the source 

side (@source-side). Clearly, only type inferencing at the source side influences performance during 
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the Source Encounter phase. Furthermore, two sub-options are available, namely 1/ inferring subject 

and object types based on property domain and range restrictions (indicated as +dom/ran), and 2/ 

additionally inferring subclasses of found types (indicated as +subclass). Note that in our 

experiments, the second option (+subclass) is always enabled in addition to the first option 

(+dom/ran), and thus stands for full type inferencing support. 

Table 5-22 shows the SIM memory and performance overheads when type inferencing is enabled. 

Table 5-22/a shows the increased memory space taken up by the SIM (for brevity, only results for 

3000 and 5000 sources are shown), while Table 5-22/b shows the extra computational overhead of 

type inferencing, including the inferencing time itself (shown per source) and ontology retrieval time 

(shown per ontology). It can be observed from Table 5-22/a that the SIM memory size becomes 

exceedingly high for 5000 sources when subtypes are also inferred (ca. 63Mb). Therefore, 

experiments with the +subclass option enabled were only run for 3000 sources on the Android 

device; results for 5000 sources were obtained via the JRE version of the query service. 

          (a) Memory size (Kb)             (b) Avg. processing times (ms) 

Table 5-22. SIM – Source Encounter phase – Type inferencing (SIM3). 

Table 5-23 shows the type inferencing results for Meta Cache. Table 5-23/a shows the increased 

memory space taken up by Meta Cache (for brevity, only results for 3000 and 5000 sources are 

shown), and Table 5-23/b shows the performance overheads. Comparable to the SIM, the size of 

Meta Cache becomes exceedingly high if subtypes are inferred for 5000 sources (ca. 52Mb). 

Therefore, we only performed experiments with the +subclass option enabled for 3000 sources. The 

resulting Meta Cache size for 5000 sources was obtained via the JRE version. 

 

 

 

 

 

 

SIM3 

#sources 

(size) 

@ source-side 

+dom/ran +subclass 

3000 

(336Mb) 

11200 55705 

5000 
(526Mb) 

12401 64115 

 

SIM3 

 @ source-side 

+dom/ran +subclass 

infer metadata (/ source) 23488 36485 

retrieval time (/ ontology) 1210 
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Meta Cache 

#sources 

(size) 

@ source-side 

+dom/ran +subclass 

3000 
(336Mb) 

29410 41228 

5000 
(526Mb) 

37867 53163 

 

 

Meta Cache 

 @ source-side 

+dom/ran +subclass 

infer metadata (/ source) 12552 18842 

            (a) Memory size (Kb).                  (b) Avg. processing times / source (ms). 

Table 5-23. Meta Cache – Source Encounter phase – Type inferencing. 

Type mediation requires resource information to be kept, such as types and origin sources. In order 
to index this resource information, two index data structures are available, namely a default resource 
index (keeping a single hash table) and a multi-level resource index (swapping to persistent storage 
to save memory).  

Table 5-24 shows the memory space taken up by both index data structures in case of the SIM. From 
the table, we observe that the memory size taken up by the default index for 5000 sources is very 
high (ca. 78Mb). Therefore, we only performed experiments utilizing the default index for 3000 
sources on the Android device. We obtained the default index size for 5000 sources via the JRE 
version of the query service. In Table 5-25, we show the computational overhead of type mediation 
for the SIM; we separately show the persistent storage and database access times incurred by the 
multi-level index. We note that for SIM, the mediation time also includes the download time to re-
download the necessary sources (see Chapter 4, section 4.7.3.2).  

 

 

 
 
 
 

Table 5-24. SIM – Source Encounter phase – Type mediation (SIM3): Memory size (Kb). 

 

 

 

 

Table 5-25. SIM – Source Encounter phase – Type mediation (SIM3): Avg. processing times per source 
(ms). 

In Table 5-26, we show the memory sizes of both index data structures in case of the Meta Cache. 

Note that type mediation requires different resource information to be kept for SIM and Meta Cache 

(see Chapter 4, section 4.7.3), resulting in different index sizes and maintenance times for both 

components. As was the case for the SIM, the memory space required by the default index for 5000 

sources is exceedingly high (ca. 71Mb). Furthermore, the memory space taken up by the multi-level 

#sources 

(size) 

 

default index 

 

multi-level index 

3000 (336Mb) 41215 21564 

5000 (526Mb) 79453 34567 

type 

mediation 

multi-level index 

db access persist storage 

840 484 6088 
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index for 5000 sources is also very high (ca. 42Mb). The default index sizes above 2500 sources, and 

the multi-level index size above 4000 sources, were obtained via the JRE version of the query service.  

Table 5-27 shows the computational overhead of the type mediation process for Meta Cache. We 

again note that, since the type mediation processes for the SIM and Meta Cache are different, they 

result in different mediation times for both components. In addition, the table shows the storage and 

database access times for the multi-level index. Due to the aforementioned memory issues, we only 

performed experiments utilizing the default index for 2500 sources, and the multi-level index for 

4000 sources, on the Android device.  

 

 

 
 

 

 

Table 5-26. Meta Cache – Source Encounter phase – Type mediation: Memory size (Kb). 

 

 
 
 

Table 5-27. Meta Cache – Source Encounter phase – Type mediation: Avg. processing times / source 
(ms). 

5.5.1.2 Data Query phase 

This section shows the effects of OWA features on experiment results during the Data Query phase, 

for the SIM and Meta Cache components.  

Regarding type inferencing, we consider three cases; applying type inferencing at the query side 

(@query-side), at the source side (@source-side) and at both sides (@both sides). For each case, we 

indicate the results for each sub-option; namely, infer subject and object types via domain and range 

restrictions (+dom/ran) and additionally infer subtypes (+subclass).  

Table 5-28 shows the influence of type inferencing on data access for both components. It shows the 

amount of sources identified by the SIM, together with the number of query results returned by both 

components (between brackets). For ease of reference, the table also shows the original selectivity, 

with the original number of query results between brackets. In case the new results differ from the 

original results, the new results are shown in bold. Note that for both SIM and Meta Cache, inferring 

subtypes (+subclass option) at the source side incurs too high a memory overhead for 5000 sources. 

Selectivity results for those cases were thus obtained from the JRE version.  

 

#sources (size) Default index Multi-level index 

2500 (275Mb) 30654 19700 

4000 (442Mb) 59730 27218 

5000 (526Mb) 73094 42932 

type 
mediation 

Multi-level index 

db access persist storage 

853 2604 26507 
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query 

 

original  

@ query-side @source-side @both sides 

+dom/ran +subclass +dom/ran +subclass +dom/ran +subclass 

Q1 254 (4) 49 (0) 49 (0) 254 (4) 254 (4) 215 (4) 215 (4) 

Q2 272 (272) 271 (272) 271 (272) 281 (282) 313 (658) 281 (282) 313 (658) 

Q3 319 (319) 0 (0) 0 (0) 319 (319) 319 (319) 319 (319) 319 (319) 

Q4 87 (77) 87 (77) 87 (77) 87 (77) 87 (77) 87 (77) 87 (77) 

Q5 256 (148) 256 (0) 256 (0) 256 (148) 256 (148) 256 (148) 256 (148) 

Table 5-28. Query Service – Data Query phase – Type inferencing (Meta Cache, SIM3): Data access. 

In Table 5-29, we show the type inferencing overhead for the SIM during querying. It can be 

observed that type inferencing at the source side (@source-side) also incurs an overhead during the 

Data Query phase, since type inferencing needs to be re-applied to the identified sources (see 

Chapter 4, section 4.6.1). Note that, due to out-of-memory issues, experiments with the +subclass 

option were only run for 3000 sources. 

SIM3 

 

query 

@ query-side @source-side 

+dom/ran +subclass +dom/ran +subclass 

Q1 109 119 1027565 3296976 

Q2 124 797 922511 1023149 

Q3 988 4309 2884838 8578673 

Q4 0 0 16293 43627 

Q5 3260 3268 499867 1693493 

Table 5-29. SIM – Data Query phase – Type inferencing (SIM3): Processing times (ms). 

Table 5-30 shows the same type inferencing overhead for Meta Cache. As for the SIM, type 

inferencing at the source side (@source-side) incurs an overhead during querying; since type 

inferencing needs to be re-applied to online source data retrieved in response to cache misses (see 

Chapter 4, section 4.6.1). Again, due to memory issues, results are shown for the +subclass option at 

the source side for 3000 sources. 
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Meta Cache 

 

query 

@query-side @source-side 

+dom/ran +subclass +dom/ran +subclass 

Q1 263 293 1120833 1574279 

Q2 720 727 319577 638294 

Q3 693 3366 4828998 6262059 

Q4 1 1 32930 62582 

Q5 2169 2180 0 0 

Table 5-30. Meta Cache – Data Query phase – Type inferencing: Processing times (ms). 

Table 5-31 illustrates the effect of type mediation for the SIM on data access. In addition to showing 

source selectivity, the table indicates the new amount of query results between brackets (in case one 

of the amounts differs from the original, it is shown in bold). The table also shows the performance 

overhead during the Data Query phase. In case of the SIM, the original contents of online identified 

sources need to be synchronized with the previously mediated resource types (see Chapter 4, section 

4.7.3.2). This overhead is shown for both indices, whereby the result for the multi-level index also 

includes persistent reading and database overheads. 

SIM3 

 

query 

 

selectivity 

sync overhead 

default index multi-level index 

Q1 254 (4) 6434 412829 

Q2 272 (273) 195 191632 

Q3 319 (319) 4223 765070 

Q4 87 (77) 1190 48129 

Q5 256 (148) 5352 367945 

Table 5-31. SIM – Data Query phase – Type mediation (SIM 3): Data access & processing times (ms). 

Finally, Table 5-32 shows the overhead of type mediation on Meta Cache. For ease of reference, the 

table again indicates the impact of type mediation on data access, showing the new amount of query 

results together with the original amount (between brackets); in case the new amount differs, it is 

shown in bold. Similar to type inferencing, type mediation needs to be re-applied to online source 

data retrieved in response to cache misses (see Chapter 4, section 4.7.3.3). Due to memory issues, we 

were only able to run the default index up to 2500 sources; therefore, we only show mediation 

results for the multi-level resource index, which could be run for a larger amount of sources (4000) 

and thus yields more cache misses. Since the multi-level index swaps to persistent storage, the shown 

time includes database access and persistent storage times as well. 
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Meta Cache 

query # query results mediation time 

Q1 4 3734 

Q2 273 (272) 3277 

Q3 319 1989 

Q4 77 128 

Q5 148 0 

Table 5-32. Meta Cache – Data Query phase – Type mediation: Data access & processing times (ms). 

5.5.2 Experiment 4: Discussion 

In this section, we investigate the effects of the two OWA features, namely type inferencing (section 

5.5.2.1) and type mediation (section 5.5.2.2), on both the SIM and Meta Cache components during 

the Source Encounter and Data Query phases. 

5.5.2.1 Type inferencing  

Type inferencing may be applied at the query side, whereby it extends the extracted search 

constraints, and at the source side, whereby source metadata is enriched. First, we elaborate on the 

impact of the type inferencing process on the Source Encounter phase. Then, we discuss its influence 

on the Data Query phase. 

Source Encounter phase 

Table 5-22/a shows the increased memory usage of the SIM after applying type inferencing. 

According to this table, inferring types based on domain/range restrictions as well as subclass 

relations (+subclass101) yields a factor 7,1 increase (ca. 63Mb). Table 5-23/a illustrates the same 

memory usage results for Meta Cache, and shows that the +subclass option results in a factor 1,43 

increase (ca. 52Mb) in storage space. For Meta Cache, additional types simply result in extra index 

entries and cache unit objects (i.e., associated with new metadata combinations); while for the SIM, 

additional types give rise to extra map data structures in its multi-level index structure, yielding 

larger memory overheads. For both components, the +subclass option results in exceedingly large 

memory usage given the maximum memory limit (max. 64Mb), contradicting our requirement of 

reduced memory usage. 

In Table 5-22/b and Table 5-23/b, we observe that type inferencing also incurs a huge computational 

overhead for both components. The incurred inferencing time with both options enabled (+subclass 

column) is exceedingly high (max. ca. 36s / source), while the +dom/ran option also yields huge 

processing times (max. ca. 23s / source). Furthermore, the necessary ontologies need to be loaded 
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from persistent storage, incurring loading times (ca. 1,2s / ontology). This contradicts our 

requirement of reduced computational overhead.  

From the above, we conclude that type inferencing yields a huge overhead during source processing, 

regarding memory usage and performance, for both components.  

Data Query phase 

Table 5-28 shows the selectivity results when type inferencing is enabled. Regarding type inferencing 

at the query side (@query-side), the results indicate that an increased amount of sources is ruled 

out. This is in line with expectations, as more extensive search constraints (e.g., extra subject/object 

types) rule out more irrelevant sources (see Chapter 4, section 4.6.1). Compared to the original 

selectivity, 205 additional sources can be ruled out for query 1, while 1 extra source is excluded for 

query 2. However, no results at all are returned for queries 1, 3 and 5, while no query-relevant 

sources are found for query 3. When investigating the results more closely, in case of query 3, an 

extra subject type was inferred (i.e., wgs:SpatialThing) that did not occur in combination with the 

subject type specified in the query102 (i.e., sch:Airport) in our semantic dataset. Additionally inferring 

subclass types at the query side did not further influence selectivity results. Therefore, we observe 

that applying type inferencing solely @query-side is not workable; due to the fact that we are dealing 

with a real-world dataset, where content authors likely do not exhaustively type RDF resources with 

all applicable types. By applying type inferencing @source-side in in addition to @query-side (see 

further), this issue is mitigated. 

The experiment results show that type inferencing at the source side (@source-side) leads to an 

increased number of query-relevant sources, as well as extra query results. This is again expected, 

since an increased amount of source metadata allows for more query-relevant sources to be 

identified, as well as more relevant query results to be returned. For the second query, 9 additional 

sources are identified and 10 extra results are returned. On closer inspection, the extra query results 

originally lacked the explicit type information specified in the query, but otherwise suited the 

information request. For instance, some person resources were not explicitly typed as foaf:Person, 

but via their participation as subjects in properties such as foaf:knows and foaf:firstName, which 

have a foaf:Person domain restriction, the foaf:Person type can be inferred. Additionally inferring 

subtypes further increases the number of query-relevant sources for query 2, as well as the number 

of query results.  

In case type inferencing is enabled both at the query and source side (@both-sides), we observe a 

balance between increased selectivity on the one hand, and retrieving extra query-relevant 

information on the other. The same amount of extra query-relevant data is returned for query 2 (cfr. 

@source-side); while source selectivity is increased for query 1 (39 irrelevant sources are ruled out). 

Importantly, no more query-relevant information is lost, which was the case when only applying type 

inferencing @query-side.  
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Finally, tables 5-29 and 5-30 show the overhead of type inferencing for both components during the 

Data Query phase. Although the overhead associated with @query-side is relatively low, the 

@source-side overhead is extremely high. This performance overhead results from re-applying type 

inferencing to either 1/ each identified and re-downloaded data source (SIM), or 2/ all sources that 

were downloaded in response to cache misses (Meta Cache). In case of Meta Cache, the processing 

time for the +subclass option ranges from ca. 63s to 104m (!). The necessity of performing this 

inferencing step during the Data Query phase is a direct result of our specific setting, where data is 

captured in online files not under our control. Therefore, they cannot be updated with the types 

inferred during the previous phase. 

We conclude that type inferencing indeed improves data access, allowing extra query-relevant data 

to be found and more irrelevant sources to be ruled out. In order to obtain an optimal result, type 

inferencing should occur both at the query and source side. However, type inferencing @source-side 

incurs an extremely high performance overhead, for either component and during both the Source 

Encounter and Data Query phase; especially when subtypes are additionally being inferred. These 

performance overheads, which result from querying ontologies on-the-fly, cannot be avoided during 

type inferencing. Analogously to RDF stores, type inferencing can be switched on / off to suit device 

capabilities and application requirements. 

5.5.2.2 Type mediation 

Type mediation also involves indexing RDF resource information (e.g., previously found types). For 

this purpose, we evaluate two resource index structures: a default resource index, simply keeping a 

hash table; and a multi-level resource index, which swaps index data to persistent storage to save 

memory. Below, we elaborate on the impact of type mediation on both components during the 

Source Encounter and Data Query phases. 

Source Encounter phase 

Tables 5-24 and 5-26 show the memory space required by the two index structures, respectively for 

the SIM and Meta Cache components. As expected, the default resource index yields a high memory 

overhead in both cases, which contradicts our requirement of reduced memory usage (also 

exceeding the maximum heap size; 64Mb). Tables 5-25 and 5-27 show the performance overhead of 

the type mediation for both components. Although the multi-level resource index significantly 

reduces memory usage, it also incurs a large performance overhead caused by database access and 

persistent storage operations. As such, the multi-level index clearly presents a balance between 

memory usage on the one hand, and performance effort on the other. 

In case of the SIM, the mediation overhead includes the time needed to re-download the necessary 

sources, which is required to construct the new metadata combinations (see Chapter 4, section 

4.7.3.2). For Meta Cache, this overhead includes moving cached triples to new cache units, reflecting 

the RDF triples’ new associated metadata combinations (see Chapter 4, section 4.7.3.3). Since both 

units are likely stored persistently, this yields persistent read and write costs. Note that the triple 
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extraction process is already optimized, via a disk-backed map data structure keeping the physical 

locations of triples in persistent storage. This map is used to avoid loading the cache units, from 

which triples need to be extracted, entirely into memory (see Chapter 4, section 4.7.3.3). 

We conclude that the type mediation overhead during source processing is relatively low for both 

components, compared to the type inferencing overhead (see section 5.5.2.1). On the other hand, 

the memory-efficient multi-level resource index is required to make type mediation feasible on 

current mobile devices given their memory restrictions, and incurs a large performance overhead. 

Data Query phase 

Tables 5-31 and 5-32 illustrate the effects of type mediation on data access, respectively for the SIM 

and Meta Cache. Due to the up-to-date query service metadata, we expect data access to be 

improved by having more query-relevant information returned (see Chapter 4, section 4.6.2). From 

the results, we observe there is only a small impact, as the SIM exhibits the same source selectivity 

and only 1 extra query result is returned (see query 2). The extra result in question concerns an RDF 

resource, whereby a first online source referenced the resource but does not specify any types; and 

another online source stated that the resource is of type foaf:Person.  

During source processing, potentially problematic situations, where newly found RDF resources had 

already been encountered, occurred 2097746 times. In 36009 cases (1,7%), sources specified 

different types for the same RDF resources; while in 1719 cases (0,08%), new sources specified 

additional types for previously found resources, necessitating type mediation to update internal data 

structures. We observe that the latter number (1719) is very low, compared to the number of times 

different resource types are specified (36009). Typically, an RDF resource is only detailed (e.g., 

assigned types) in a limited number of sources, while the resource is referenced in a larger number of 

sources (i.e., simply mentioned as subject/object in a triple). For instance, a person resource will 

typically only be detailed in its own FOAF profile (e.g., given a foaf:Person type), while other FOAF 

profiles simply reference the person resource (e.g., via foaf:knows). Therefore, problematic typing 

issues (i.e., necessitating type mediation) only occur a very limited number of times; namely, after 

the detailed online sources are processed, and components need to be updated with the new types. 

The fact that the number of problematic typing issues (0,08%) is very limited, as well as occurrences 

where sources specify different types for the same resources (1,7%), might explain why related 

approaches [12, 67, 68] do not consider type mediation.  

As shown in both tables, type mediation also involves a performance effort during the Data Query 

phase. For the SIM component, the original contents of identified sources need to be synchronized 

with the previously mediated resource types (see Chapter 4, section 4.7.3.2). Regarding the Meta 

Cache, type mediation needs to be re-applied to sources that were downloaded in response to cache 

misses (see Chapter 4, section 4.7.3.3). In both cases, this involves accessing the resource index for 

each individual resource found in the particular data sources, to retrieve their mediated resource 

types. For the SIM, in case the multi-level resource index is employed, this yields very high persistent 

read and database access times (ranging from ca. 48s to 13m). For Meta Cache, this leads to 
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relatively low mediation times, since type mediation only needs to be applied to cache-missed online 

sources (as opposed to all online query-relevant sources). As was the case for type inferencing, this 

required effort is again a result of our setting where data is captured in online, third-party files, 

where the online files cannot be updated with the mediated resource types. 

We conclude that in our particular online dataset, a very limited number of typing issues occur, and 

the type mediation process needs to be performed in an even smaller number of cases. Also, the 

feature only has a limited effect on data access for our specific experiment queries. Compared to 

type inferencing, the type mediation feature yields relatively low overhead during both phases. 

However, when utilizing the multi-level resource index to reduce memory consumption and make 

type mediation feasible on memory-restricted devices, an exceedingly high performance penalty is 

incurred. To improve performance, further optimization of the multi-level index implementation is 

needed, and additional research should be performed on more efficient indexing structures.  

5.6 Conclusion 
In Chapter 4 (see section 4.2), we discussed a number of issues and challenges occurring when 

querying an online semantic dataset, consisting of small online semantic sources. In order to make 

querying the retrieved semantic data feasible on mobile devices, the total query dataset should be 

reduced. Furthermore, the online dataset is captured in individual files, meaning the number of 

source downloads should be minimized to decrease the data-retrieval overhead and reduce the 

impact of connectivity loss. In order to tackle these challenges, we presented two solutions: 1/ 

identifying query-relevant online sources; and 2/ locally caching data. To further meet our 

challenges, the following requirements should be fulfilled: 1/ retrieving query-relevant data in a fine-

grained way; and 2/ reducing processing effort and memory usage on mobile devices.  

In our experiments, we utilized a large, real-world dataset (526Mb) collected from a variety of 

heterogeneous sources; comprising semantic data on people, places and things (e.g., including 

products for sale), as well as location-specific and geographical data. Furthermore, we authored five 

queries that request useful information in a context-aware setting; for instance, allowing interesting 

nearby entities to be plot on a map view, or indicating the usefulness of physical entities (e.g., 

product price & comments, displayed exhibition artifacts, etc.) to the mobile user. In addition, these 

queries reference the range of data types found in the experiment dataset (e.g., products, people, 

and geographic entities). Consequently, we believe the experiment setup reflects a realistic usage 

scenario of the mobile query service. 

The Source Index Model realizes the first solution of identifying query-relevant sources, while the 

Source Cache and Meta Cache implement the caching solution. In order to deploy both solutions, the 

mobile query service either utilizes the SIM together with the Source Cache; or the standalone Meta 

Cache, which is also able to perform the identification task. These components have proven to suit 

the requirements, in some cases compromising performance and memory usage to increase fine-
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graininess of data retrieval. While the lightweight Source Index Model makes querying the online 

semantic dataset feasible, utilizing a local cache makes the querying performance more realistic, in 

particular Meta Cache. These observations confirm our initial hypothesis, stating that keeping source 

metadata yields a balance between fine-grained data retrieval and memory / performance overhead 

(see Chapter 4, section 4.3). 

On the other hand, overall execution times still remain high for Meta Cache, even for the best 

performing configuration where the LPS removal strategy is applied (ranging from ca. 1,5s to 1,3m; 

average 23s). Major overheads include persistent loading times, source download times and 

individual query execution times. The former two times may be kept in check by more fine-grained 

data retrieval and a suitable removal strategy, but are in the end unavoidable in a scenario where 

memory and storage are limited. The query execution time is bounded by the underlying query 

engine (in our case, Androjena), as well as device processing capabilities. For instance, we observe 

that it takes up to 1m to execute query 5, regardless of the query dataset size. This is a known 

problem with current mobile query engines; e.g., the MobiSem article [18] already reported issues 

with accessing relatively small RDF graphs (containing several hundred triples) on mobile devices 

using the µJena library103. In addition, cache maintenance times are very high when data is 

persistently stored or removed per origin source (e.g., LPS), due to more course-grained removal 

units and resulting persistent write times. Future work consists of optimizing these cache 

maintenance operations for source-based removal strategies.  

Regarding the LPS removal strategy, we manually chose an LPS factor weighting in our experiments 

that yielded the best results for our dataset and experiment queries. However, the composition of 

the semantic dataset likely influences the optimal factor weighting. For instance, previous 

experiments [86] used a partially synthetic dataset, with fewer metadata combinations that were 

more evenly spread across the data. In that case, larger numbers of source re-downloads per cache 

miss were incurred, since the missing metadata combinations typically occurred in many more online 

sources. Automatically inferring suitable factor configurations, based on the composition of the 

encountered data, is considered future work. 

The OWA features, including type inferencing and type mediation, proved useful in improving data 

access. Applying type inferencing at both the query and source side resulted in increased data 

selectivity, as well as more query-relevant data being identified. Although type mediation only had a 

very limited effect for our particular experiment queries and online dataset, it proved effective at 

keeping resource type information up-to-date. On the other hand, the type inferencing process 

incurs extremely high performance overheads; meaning that applying type inferencing in our mobile 

query service, using current mobile device resources and our straightforward inferencing component 

(OntologyManager class; see Chapter 4, section 4.6.1), is practically not feasible at this point. Either a 

more advanced type inferencing component needs to be plugged in, or more powerful mobile 

devices need to be employed. Regarding type mediation, the incurred memory overhead 

                                                           
103

 http://poseidon.ws.dei.polimi.it/ca/?page_id=59 (access date: 25/06/2013) 

http://poseidon.ws.dei.polimi.it/ca/?page_id=59


 
 
 
Experimental validation  205 
 

necessitates employing a multi-level resource index that swaps to persistent storage, significantly 

decreasing efficiency and again leading to impractical performance. Future work involves devising a 

more efficient implementation of the multi-level index. We note that for mobile devices with 

increased memory (i.e., large available heap spaces) and a reasonable amount of online sources, the 

default resource index can be employed, which would already significantly improve performance. 

Furthermore, in case it is a priori known that type mediation is not necessary, either because the 

online dataset can be extended with missing types or due to a particular composition of the online 

dataset, type mediation can be turned off.  

5.7 Summary 
In this chapter, we performed an experimental validation of the mobile query service. In these 

experiments, we applied a mobile, context-aware scenario where SCOUT plays the role of client. 

Suiting this scenario, we constructed five queries and collected a real-world dataset, extracted from 

existing online sources, to be used as online semantic dataset. In particular, we performed an 

experimental validation of the Source Index Model and cache components, as well as cache removal 

strategies and the Semantic Web Open World Assumption (OWA) features. Below, we shortly 

summarize the experiment setup. 

In order to investigate the impact of source metadata on data selectivity and memory/processing 

overhead, we compared different variants of the SIM, each keeping varying amounts of metadata. In 

order to evaluate the utility of the SIM, we also checked the case where no SIM is used (i.e., native 

query engine performance). The source processing overhead and memory requirements were 

contrasted to the increase in source selectivity and overall execution times during querying. 

We further studied the two different cache organizations called Source Cache and Meta Cache, 

whereby cached data is respectively organized via origin source and shared metadata. As for the SIM, 

we offset performance and memory usage to the fine-graininess of data retrieval and query 

execution performance. The effects of applying the two different removal strategies, namely Least-

Recently-Used (LRU) and Least-Popular-Sources (LPS), were also studied. For the LPS strategy, we 

tested different weights for the factors in the removal value calculation, and investigated the impact 

of different persistent data clustering techniques. 

Finally, we evaluated the two supported Semantic Web’s Open World Assumption (OWA) features, 

namely type inferencing and type mediation. The incurred performance and memory penalties are 

weighted against the improvement in data access, yielded by increased source selectivity and 

additional query-relevant results. 

We presented and extensively discussed the experiment results, comparing the performance of the 

different components, removal strategies and features during source processing and querying, and 

checked adherence to the formulated requirements (see Chapter 4, section 4.2). Finally, we drew 

general conclusions from the experiment results. 



 



 

Chapter 6  

Applications using SCOUT 

In the previous chapter, we performed an experimental validation of the mobile query service. These 

experiments were applied on a real-life dataset, retrieved from a variety of heterogeneous existing 

sources, and involved a mobile context-aware scenario. Different variants of core query service 

components were evaluated and compared, as well as the effects of the Semantic Web’s Open World 

Assumption (OWA) features. In these experiments, SCOUT played the role of client, utilizing the 

query service to transparently access online semantic data describing the user’s surroundings.  

While the previous chapter evaluated data access performance, this chapter presents proof-of-

concept applications that utilize the SCOUT functionality. In particular, we discuss three mobile 

applications that demonstrate SCOUT’s use and capabilities, and rely on the context access features 

to realize their own functionality. Below, we shortly summarize each application. 

The Person Matcher [31] demonstrates the data filtering capabilities of the SCOUT framework. The 

application pro-actively identifies nearby people of interest, and pushes the information to the user. 

To perform this identification, the Person Matcher executes a compatibility check between the user 

and nearby people, which involves crawling their FOAF networks and checking for overlaps. In order 

to be notified of nearby people and their online FOAF profiles, the Person Matcher relies on the 

push-based query access supplied by SCOUT.  

COIN (COntext-aware INjection) [29, 32] implements a client-side web augmentation approach, 

which injects context-aware features into existing websites on-the-fly. In particular, COIN focuses on 

enriching websites to suit the mobile user’s needs, which are often related to his current 

environment; for instance, where to find a nearby place to have lunch, or the closest metro station 

connecting to the university campus. In order to perform its augmentation task, COIN thus requires 

access to rich environment context data. Moreover, COIN should be notified in case of context 

changes, so injected features can be kept up-to-date. Fulfilling these requirements, SCOUT is utilized 
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to supply the required context data in a push- and pull-based way. Furthermore, the non-centralized 

nature of SCOUT perfectly suits the client-side COIN approach. 

The AdaptIO approach [33] dynamically adapts the obtrusiveness of mobile interactions to suit the 

mobile user’s current situation. Due to the ubiquity of mobile devices, mobile interactions may occur 

in a variety of situations, thus increasing their potential for obtrusiveness. In order to accurately 

define and determine obtrusive situations (e.g., in a meeting), in any mobile environment, AdaptIO 

requires rich environment context data. Moreover, any a priori unknown environment should be 

supported, possibly only minimally (or not at all) outfitted with context-aware infrastructure. For this 

purpose, we aligned [30] the existing AdaptIO approach with SCOUT, which provides the necessary 

context data in a push- and pull-based way. Moreover, SCOUT is specially targeted towards sensing 

context in heterogeneous and minimally outfitted environments. 

The chapter is structured as follows. Section 6.1 discusses the Person Matcher application. In section 

6.2, we elaborate on the COIN approach, while section 6.3 details the extended AdaptIO application. 

Finally, section 6.4 summarizes this chapter. 

6.1 The Person Matcher 
Due to the increased connectivity of powerful new mobile devices, combined with location 

awareness (e.g., GPS) as well as identification and sensing technologies (e.g., RFID), a realistic 

opportunity presents itself to automatically deliver content related to the user’s current 

environment. However, mobile users can easily be overwhelmed by the huge amount of information 

available from their surroundings; most of which is not relevant for the given user at a given time. As 

such, a main challenge is to filter and personalize the available information, depending on the needs 

of the user.  

The Person Matcher [31] makes use of SCOUT’s ability to detect nearby entities, thus demonstrating 

the pro-active data filtering support provided via the push-based semantic query access. In 

particular, the Person Matcher is registered to be notified by SCOUT’s Environment Notification 

Service when specific entities, i.e. people, are in the user’s vicinity. For each detected person, the 

Person Matcher performs a detailed compatibility check based on the FOAF profiles of the user and 

the detected person, and notifies the user when a person of interest is found. This compatibility 

check is grounded in finding connections between the FOAF networks of the user and the detected 

person. A configurable weighting scheme specifies the kind of people the user is interested in (e.g., 

potential collaborators or people sharing interests).  

Below, we shortly position the Person Matcher in related work (section 6.1.1). Section 6.1.2 

elaborates on the general process implementing the aforementioned compatibility check. In section 

6.1.3, we illustrate the mobile user interface.  
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6.1.1 Related work 

To determine compatibility between the user and nearby people, the Person Matcher performs a 

crawling process of the user’s and the detected person’s FOAF networks, and finds connections 

between them. There already exist a number of generic Semantic Web crawlers (also known as 

“Scutters”), which exploit the rdfs:seeAlso properties to crawl sets of connected RDF files. This 

includes the RDF Crawler104 [94], Elmo Scutter105, and Slug [95]. To our knowledge, no 

implementation already existed for a mobile environment.  

Tools such as FoaF Explorer106, FoafNaut107, and WidgNaut108 visualize FOAF networks, relying on 

FOAF scutters to provide the necessary information. Furthermore, generic search engines for 

Semantic Web datasets also exist (e.g., Swoogle [96]). However, none of these tools focus on finding 

connections between two given FOAF profiles in a mobile setting, and cannot be configured to 

emphasize certain relationships (e.g., colleagues).  

6.1.2 General process 

The Person Matcher registers a semantic query with the SCOUT Environment Notification Service 

(see Chapter 3, section 3.4.3), which returns nearby persons together with their online FOAF profile 

location. This SPARQL query is shown in Code 6-1 (namespaces omitted for brevity). The query 

returns nearby persons (type foaf:Person) currently nearby (sm:isNearby) the user (type um:User), 

together with their online FOAF profile location (indicated via rdfs:seeAlso or 

foaf:PersonalProfileDocument): 

SELECT ?person ?foaf_profile 
WHERE { 

    ?person rdf:type foaf:Person .  

  ?stat rdf:subject ?person ; 

   rdf:predicate sm:isNearby ; 

   rdf:object ?user . 

 ?user rdf:type um:User . 

 {  

            ?person rdfs:seeAlso ?foaf_profile . 

 } UNION { 

     ?foaf_profile rdf:type foaf:PersonalProfileDocument .  

     ?foaf_profile foaf:maker ?person . 

 } 

    } 

Code 6-1. Person Matcher: Query registered with the Environment Notification Service. 

                                                           
104

 http://ontobroker.semanticweb.org/rdfcrawl/ (access date: 03/05/2013) 
105

 http://www.openrdf.org/doc/elmo/1.0/user-guide/x458.html (access date: 03/05/2013) 
106

 http://xml.mfd-consult.dk/foaf/explorer/ (access date: 03/05/2013) 
107

 http://crschmidt.net/semweb/foafnaut/ (access date: 03/05/2013) 
108

 http://www.softpedia.com/get/Windows-Widgets/Widget-Miscellaneous/Widgnaut.shtml (access date: 
03/05/2013) 

http://ontobroker.semanticweb.org/rdfcrawl/
http://www.openrdf.org/doc/elmo/1.0/user-guide/x458.html
http://xml.mfd-consult.dk/foaf/explorer/
http://crschmidt.net/semweb/foafnaut/
http://www.softpedia.com/get/Windows-Widgets/Widget-Miscellaneous/Widgnaut.shtml
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As the mobile user is walking around, the Person Matcher is thus continuously provided with FOAF 

profiles of people in the vicinity. For these FOAF profiles, the Person matcher computes compatibility 

with the user’s own FOAF profile, using a configurable matching algorithm. Below, we first 

summarize this matching algorithm responsible for finding connections between two FOAF networks. 

Then, we shortly discuss the weighting scheme that can be used to configure the matching algorithm 

to suit different purposes. 

6.1.2.1 Matching algorithm 

The goal of the matching algorithm is to find connections between two FOAF networks, whereby a 

connection consists of a sequence of direct or indirect links. A link connects two persons and is based 

on one or several FOAF properties. In particular, direct links directly link a person to another person, 

and involve a single RDF property (e.g., foaf:knows). Indirect links indirectly connect two persons via 

a number of RDF properties and intermediary resources. For instance, the foaf:made property 

connects a person to a resource (e.g., document) he made, to which other person may also be 

connected via foaf:made. Other examples involve properties such as foaf:interest and 

foaf:workplaceHomepage, whereby two persons are linked in case they share the same interest or 

workplace resources, respectively. Figure 6-1 illustrates both types of links. 

The matching algorithm constructs the two FOAF networks (or graphs) on-the-fly, by crawling the 

two FOAF profiles concurrently in a breadth-first way. In these graphs, the nodes represent Persons, 

while edges correspond to direct or indirect links. During the crawling process, online RDF sources 

associated with relevant resources, including other linked persons or intermediary resources (e.g., 

co-authored documents), are dynamically retrieved. By leveraging the links found in these retrieved 

online sources, the graphs are further extended and the crawling process is continued. During this 

process, the algorithm stops exploring link sequences in case their total score (see below) falls below 

a configured threshold. The matching algorithm extends both graphs by recursively performing the 

crawling process, until a predefined number of iterations are reached.  
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Figure 6-1. Person Matcher: Overlaps between to FOAF networks. 

A connection is found in case the two constructed graphs overlap; in other words, when one or more 

link sequences connect the two initial Person nodes. Figure 6-1 illustrates two example FOAF 

networks and the connections between them. In this case, two connections are found: (1) both the 

user and the encountered person have a common acquaintance (P2; via foaf:knows); and (2) the user 

co-authored (via foaf:made) a document with another person (P3) belonging to the same group 

(foaf:member) as the encountered person. It should be noted that, via the crawling process, the 

algorithm combines information from multiple online RDF sources, resulting in connections for which 

the relevant information was not present in any single source. 

The compatibility score between two FOAF profiles is the sum of the individual scores of connections 

between the two graphs. Each connection’s score is calculated as follows (j stands for the total 

number of links in the connection; weighti represents the weight of the ith link in the connection):  

     (          )   (∏        
      

 ) (   
 

  
) 

A connection’s score multiplies the weights of its individual links. The last factor ensures that the 

score decreases with the length of the path. Below, we discuss how the link weights are specified. 

6.1.2.2 Weighting scheme 

Clearly, whether or not a nearby person is interesting depends on the purpose for which the Person 

Matcher application is employed. For example, in a conference setting, the user is likely to be 

interested in finding future colleagues to collaborate with; while in his free time, he is probably on 

the lookout for people sharing his interests. Depending on the purpose for matching, some 

sequences of links will become more important when determining compatibility, while others 
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become less important or even irrelevant. For instance, in a conference setting, links involving FOAF 

properties such as foaf:made (indicating (co-)authorship) and foaf:group (indicating group 

membership, e.g., research groups) will become important.  On the other hand, FOAF properties 

such as foaf:depicts (indicating co-depiction in photos) become less important or irrelevant. 

In order to reflect the reason of use, the Person Matcher application can be configured with different 

weighting schemes (specified in RDF format). Each scheme identifies relevant FOAF property 

sequences and their importance (between 0 and 1). In other words, these schemes denote which 

connections between the two persons should be searched for. Users may specify custom weighting 

schemes, and utilize the mobile user interface (see next section) to download new schemes and 

choose between loaded weighting schemes. Two example weighting schemes can be found in 

Appendix C.1.1 and on http://wise.vub.ac.be/william/phd/index.htm#person_matcher. 

6.1.3 Mobile user interface 

The Person Matcher is a mobile application that, once started, runs continuously in the background. 

Whenever a person is encountered and the resulting compatibility calculation is complete, the user is 

pro-actively notified (see Figure 6-2/a). Figure 6-3/a illustrates the Match Result screen showing the 

details of the match. This includes the total compatibility score, the name of the matched person, his 

profile picture (if found in his FOAF profile) and an overview of the found connections. For each 

connection, the user can obtain its component links and found intermediate persons (see Figure 

6-3/b). Details on each link can be retrieved as well, including link type, relevant FOAF properties and 

intermediary resources (called groupers in the UI; see Figure 6-3/c). Finally, short summaries of 

persons can also be obtained (not shown).  

Overviews of previous results are available as well, including 1/ last 5 persons matched, 2/ best 5 

matches of the day and 3/ complete matching history (see Figure 6-2/b). From these overviews, a 

detailed view of each match can be retrieved (see Figure 6-3/a-c). Finally, Figure 6-2/c shows how the 

user can choose different weighting schemes (called match profiles in the UI) and download new 

ones, given an online location. 

 

http://wise.vub.ac.be/william/phd/index.htm#person_matcher
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          (a) Result notification         (b) Match history       (c) Configure weighting schemes 

Figure 6-2. Person Matcher: Mobile UI interaction screenshots. 

     

 (a) Match result       (b) Connection details                      (c) Link details 

Figure 6-3. Person Matcher: Match result details screenshots. 

The Person Matcher application was written for Java Micro Edition (Java ME; MIDP 2.0, CLDC 1.1) 
and built on top of SCOUT109. The above screenshots were taken from the Java ME emulator.  

6.2 COntext-aware INjection (COIN) 
COIN (COntext-aware INjection) [29, 32] is a generic, client-side web augmentation approach. The 

COIN approach enriches existing websites with context-aware features, to better satisfy the needs of 
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 Initially, the SCOUT framework was written in Java ME, but this version was abandoned when more 
powerful mobile platforms became available (i.e., Android, iOS).  
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mobile users. By performing this enrichment on existing websites and on-the-fly, i.e. while the user is 

visiting a webpage, no expensive re-engineering of the website is required. The main contribution of 

COIN is the automatic enhancement of existing websites with context-aware features; to our 

knowledge, no other frameworks are available to perform this task. We implemented COIN as a 

customizable and extendable software framework for the Android platform (version 2.2), where 

different components and techniques can be plugged in at each step. 

Any client-side approach aiming to automatically enrich existing website content requires knowledge 

on the meaning of the content. As such, COIN is motivated by the increasing availability of semantic 

information in websites, due to the use of semantic annotation languages (e.g., RDFa110, 

microformats111). Secondly, to enrich website content with context-aware features, with the goal of 

suiting mobile user needs typically related to his current environment, COIN requires access to rich 

environment context data. As the injected features need to be kept up-to-date, COIN should also be 

made aware of context changes. In order to obtain push- and pull-based access to the required 

context data, COIN utilizes the SCOUT framework. The non-centralized nature of SCOUT is a perfect 

fit for the client-side COIN approach, since all necessary context data is locally available. Moreover, 

the supplied semantic context data can be directly matched to webpage content semantics, reducing 

the complexity of feature injection.  

Below, we discuss state of the art (section 6.2.1). Section 6.2.2 summarizes the three-step, 

semantics-based process for adding context-aware features to existing websites.  

6.2.1 Related work 

Most existing websites have been designed for access from desktop computers with sufficient screen 

size, resources and input capabilities. In order for desktop-oriented websites to be usable in a mobile 

environment, webpages should be tailored to mobile devices [97, 98] as well as to a user’s mobile 

context [99, 100]. As part of the field of Adaptive Hypermedia, multi-platform context-aware 

methodologies have been developed that adapt a website according to the user, his device and/or 

context. For this purpose, the application design can include embedded conditions (e.g., in the form 

of queries [101]) or context-matching expressions [102]), which reference the user's context to adapt 

the website to various contextual parameters (e.g., device, preferences). Although such systems 

allow for the adaptation specification to be hand-crafted towards the specific website, they require 

extensive engineering at design time, and are not suitable for already deployed, existing websites.  

By moving adaptation tasks from the server to the client, existing websites can be tailored on-the-fly, 

and a more dynamic, adaptive and secure solution can be realized in general. For instance, [103] 

presents a generic, model-driven WebML [104] website containing a variety of learning objects, 

whereby a client-side UML-Guide [105] component locally generates hypermedia presentations 

suiting a particular learning goal. This results in a more dynamic solution, since any personalized 
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 http://www.w3.org/TR/xhtml-rdfa-primer/ (access date: 11/05/2013) 
111

 http://microformats.org/ (access date: 11/05/2013) 

http://www.w3.org/TR/xhtml-rdfa-primer/
http://microformats.org/
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learning goal can be supported; and more secure, since no private context needs to be passed to the 

server. So-called transcoding approaches are deployed entirely at the client side, and adapt existing 

websites at runtime. Although they lack the accuracy of site-specific adaptation engineering, they 

allow any existing webpage to be tailored to the user. In such an approach, a transcoding module 

transforms third-party webpages, usually to view them on mobile devices [97, 98]. In fact, most 

transcoding approaches focus only on adapting to device properties (e.g., small screen), and do not 

take into account the user’s full context. More recently, the MIMOSA [99] platform has been 

proposed, which takes the user’s full context into account. This is work in progress, which (until now) 

only provides a HTML parsing utility accessible by modules implementing the adaptation logic. This 

means that modules can only adapt a small set of supported websites, as the knowledge on a 

website’s HTML structure needs to be hard-coded in the module. In contrast, our approach utilizes 

the high-level semantics of the website, which allows adaptation strategies to be reused across 

websites from which content semantics can be extracted.  

Greasemonkey112 is a Firefox browser plugin that allows users to easily install and execute so-called 

user scripts (written in Javascript), which customize visited webpages on-the-fly to suit user needs 

(e.g., inject price comparisons). As such, these scripts realize client-side web augmentation. However, 

similar to the transcoding approaches mentioned above, website DOM structures need to be 

manually hard-coded. Sticklet [84] is a domain-specific language for Javascript, which aids developers 

in authoring scripts for client-side web augmentation. It employs a metaphor where a wall stands for 

the scope of a particular Sticklet script (i.e., set of webpages), and the wall consists of various bricks 

(i.e., page elements). On these bricks, notes can be stuck that represent the augmentation content 

(e.g., price comparisons retrieved from other web shops). Bricks are selected using XPath 

expressions. By allowing the author to visually indicate page elements of interest, and applying an 

inferring algorithm, suitable XPath expressions can be automatically generated. Although the Sticklet 

DSL thus significantly reduces the authoring effort, scripts are still associated with particular website 

DOMs, meaning scripts encapsulating a particular customization (e.g., price comparisons) cannot be 

directly re-used across websites. 

In most existing (automatic tailoring) approaches, adaptation only takes place once, either when the 

page is being generated (i.e., after an explicit user request) or after it has been received by the client. 

In [106], an extension for WebML is presented, where adaptation can also be triggered based on 

changes in context (as is the case in our approach). Nevertheless, as for the AH systems discussed 

earlier, the adaptation logic needs to be explicitly engineered for each web application. In [107], 

current technologies such as AJAX are exploited to dynamically replace certain parts of a webpage by 

their adapted counterparts, which is called “instant adaptation”. However, only the general 

possibilities of asynchronous technologies in AH systems are discussed. On the other hand, we 

present a fully-fledged, generic approach and software framework for on-the-fly webpage 

adaptation, aiming at context-awareness. 
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6.2.2 Generic approach for adding context-aware features 

Based on an extensive literature review of (pre-engineered) mobile context-awareness, we 

formulated requirements for our client-side web augmentation approach [29]. Furthermore, we 

identified useful adaptation methods, from the domain of Adaptive Hypermedia, to serve as context-

aware features in mobile settings. These methods include 1/ context-aware recommendations, 

where context-relevant items from the website are recommended to the user; 2/ injection of 

contextual information and aids, whereby contextual information is either directly injected into the 

visited webpage or used to highlight certain context-relevant content; and 3/ guiding the user 

through the website, whereby the user is guided towards certain webpages containing relevant 

information. For a full elaboration on the methods and requirements, we refer to [29]. 

Based on the formulated requirements and identified methods, we defined a generic step-by-step 

approach, enabling the injection of context-aware features into existing websites. As a key element, 

we rely on the extraction of semantic information from webpages, which enables us to identify 

suitable locations in a webpage where context-aware features can be added. Figure 6-4 provides an 

overview of the proposed approach. Below, we summarize the different steps. Then, we illustrate 

the step-by-step approach with a context-aware scenario, which will serve as a running example. 

 

Figure 6-4. COIN: Generic COIN approach. 

In a nutshell, the approach works as follows. First, semantic information about the content of the 

website is extracted (step 1). This includes the requested webpage, and optionally also the pages 

linked by this requested page. By also investigating linked pages, it for instance becomes possible to 
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guide the user through the website. The semantic information extracted from a webpage is 

necessary to perform the second step, where the content is matched to the user’s current context 

(step 2). The goal of the matching process is to find relevant content that can be enhanced with 

context-aware features. Access to context data is implemented by the Context Repository, which 

may also communicate changes in context (see context updates arrow). The COIN software 

framework relies on SCOUT to serve as Context Repository. Note that, due to its customizable 

nature, the COIN software framework also allows plugging in other context-provisioning frameworks, 

given the necessary context data and data access features are supplied. In the third and final step 

(step 3), one or more context-aware features are injected into the webpage. This is achieved by 

applying adaptation techniques (borrowed from the field of Adaptive Hypermedia) on the requested 

page, using the results from the matching process.  

To illustrate our approach, let us assume that a mobile user is walking around in a shopping district. 

While taking a rest, he browses some product websites, such as the BestBuy113 website, to compare 

and select products potentially sold by nearby shops. Using our approach, products related to the 

user’s interests will be recommended. Furthermore, proximity information is injected as well, 

indicating proximity between the user and the shops selling these products. Following our approach, 

the semantics of the content are first extracted (step 1). In this case, these semantics include unique 

identifiers for sold products (accompanied by for instance the product manufacturer). Subsequently, 

the extracted semantics are matched to the user’s context. The necessary context data is hereby 

retrieved via the SCOUT framework. In this example, context includes the user’s current location 

(e.g., via GPS), shops in the vicinity with their locations and sold products (e.g., from a tourist 

service). Based on the unique product identifiers and positional data, the matching process 

determines whether any nearby shops sell products mentioned on the shopping website. Finally, the 

webpage is enhanced with context-aware features (step 3); recommending interesting products and 

injecting proximity information to the shops selling those products. 

In the following sections, we discuss each of these steps in more detail. 

6.2.2.1 Semantic information extraction 

As we are aiming to inject context-awareness into existing, third-party websites, no specific website 

content or structure can be assumed. This makes the identification of context-relevant content 

fragments particularly challenging. Therefore, the first step consists of analyzing the requested 

webpage, as well as pages linked to the requested page (e.g., to realize guiding the user through the 

website). This analysis involves extracting the high-level semantics of the website content (in RDF 

format). By levering these high-level semantics, automated methods can be used in the next step to 

accurately match page content to the user’s context (see next section). 
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An important motivation and enabler for COIN is the increasing availability of semantic annotations 

in websites via annotation languages such as RDFa, microformats and microdata114. These 

annotations unambiguously define the semantics of website content, and thus provide us with high 

quality content metadata. Major search providers such as Google, Yahoo!, and Bing currently 

leverage semantic annotations to enrich search results, while for instance Facebook utilizes 

annotations to integrate webpages into their social graph (via the Open Graph protocol115). As such, 

these major players strongly encourage the widespread use of semantic annotations. For instance, 

the BestBuy website from our running example is a large-scale commercial webshop that already 

utilizes RDFa to annotate its products. At the other end, more and more website tools support the 

automatic generation of annotations during website / web content authoring (e.g., Adobe 

Dreamweaver, Wordpress, Drupal, Ruby On Rails). RDFa is currently the W3C recommendation for 

semantic annotations, and is widely supported both by search engines and authoring tools. An RDFa 

annotation uses XHTML attributes to insert resource URIs and vocabulary terms, giving explicit 

meaning to the annotated content. For example, consider the following RDFa snippet  (Code 6-2):  

<li about=”http://www.atomium.be” property=”rdfs:label”>  

Atomium 

</li> 

Code 6-2. COIN: Example RDFa snippet. 

This RDFa annotation states that the content of the LI element (i.e., the string “Atomium”) is the 

label (i.e., rdfs:label) of the resource <http://www.atomium.be>. The following RDF triple can be 

extracted from this annotation: <http://www.atomium.be> rdfs:label “Atomium”. 

For non-annotated websites, site-specific data extraction techniques can be employed to extract 

content semantics. In [108], so-called wrapper induction approaches are discussed, which allow the 

rapid generation of site-specific data extractors. However, such techniques have serious drawbacks: 

most of them are only semi-automatic, meaning the semantics of extracted data needs to be 

manually assigned in a UI (e.g., [109]). Moreover, the generation and maintenance of a site-specific 

wrapper is known to be very difficult [17]. As a result, we primarily rely on semantic annotations to 

obtain content metadata. 

The content semantics extracted from a single webpage is stored in an RDF graph called the Page 

Model, which is made available to the second step (see section 6.2.2.2). The extraction process may 

(optionally) also be applied to pages linked to the requested webpage. This is done by crawling the 

website and extracting metadata from each linked page. The crawling process can be limited for 

performance reasons (e.g., maximum amount of levels), while the extracted semantics can also be 

cached for later re-use. For the requested webpage, as well as each of the crawled pages, the 

matching process described in the following section is executed. 
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The COIN software framework currently supplies two components for semantics extraction, 

respectively supporting RDFa annotations and site-specific data extraction. The first component 

relies on a ported version of the Java-RDFa library116 to extract RDF triples from RDFa annotations. 

The second component utilizes a ported version of the Webharvest library117 to extract site-specific 

content metadata. This library requires custom XSLT files and Java code to be written for each 

webpage structure; therefore, it requires significant effort from the developer, and is less robust 

across page structure changes. Note that COIN allows plugging in any component, for instance 

implementing support for different types of semantic annotations or data analysis techniques. 

6.2.2.2 Content matching 

The goal of the second step is to identify website content relevant to the mobile user. This is 

achieved by matching the content semantics, extracted in the first step, to the user’s current context. 

To realize this matching, we thus first need access to the user’s context data. First, we discuss the 

issues related to this access; next, we discuss the matching process itself. 

Access to the user’s context 

The mobile user's context data is obtained from the Context Repository (see Figure 6-4), which 

maintains the context model and provides access to its information. In the literature, a variety of 

context information modeling approaches is described (e.g., key-value, object-role, ontology-based, 

etc.) [110], as well as frameworks implementing context acquisition, context aggregation / 

interpretation, and provisioning of context data to applications (see Chapter 2, section 2.2.4). 

Technically, the customizable COIN framework allows any existing solution to serve as Context 

Repository, and no specific format for the used context model is required. Instead, the requirements 

for the context model depend on the context-aware features to be applied. For instance, when 

emphasizing currently nearby buildings, the user’s current position is needed; when highlighting 

interesting products, the user’s interests should be accessible. On the other hand, the choice of 

context model, and how well it corresponds to the format of the extracted semantics, influences the 

complexity of matching (see below). Furthermore, any chosen Context Repository technology should 

notify the adaptation process of relevant context changes, enabling the process to keep injected 

features up-to-date.  

As mentioned, the SCOUT framework is well suited to act as Context Repository in the COIN 

approach, since it fulfills the aforementioned requirements. SCOUT provides push-and pull-based 

query access to rich environment context, including the user’s location and locations of nearby 

entities, as well as the user’s personal profile. Moreover, since the provided context data is in the 

same format as the extracted content semantics, the matching complexity is reduced (see below). 

Finally, the non-centralized nature of SCOUT enables the COIN system to be entirely deployed at the 

client side. 
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Matching content to the user’s context 

Before context-aware features can be injected, suitable locations on the webpage need to be 

identified. This is achieved via a matching process, where the extracted webpage content semantics 

is matched to the user’s context. The actual process logic of this step depends on the particular 

context-aware feature.  

In general, matching identifies page content of which the subject (e.g., <http://www.atomium.be>; 

see Code 6-2) either directly corresponds to specific context model elements (e.g., user’s interests), 

or which is context-relevant according to other criteria (e.g., has an absolute position nearby the 

user’s current position). As such, the complexity of this matching depends on the correspondence 

between the format of the extracted semantics on the one hand, and the context model format on 

the other. Both the COIN and SCOUT systems utilize Semantic Web technology as a representation 

format, thus simplifying the matching process. For example, the use of Semantic Web technology 

allows utilizing URI identifiers to directly establish equivalence between two resources118, while RDF 

properties can be employed to find relations between the data.  

The COIN software framework allows developers to specify custom context-aware features. This 

involves 1/ supplying matching strategies, in order to identify context-relevant page locations; and 2/ 

choosing and configuring suitable adaptation techniques, to inject features into the identified 

locations. When specifying a custom matching strategy, the developer first authors SPARQL queries 

for the Page Model and Context Repository (i.e., SCOUT). Below, we show these queries for our 

running example.  

Firstly, the developer defines a query119 (see Code 6-3) to retrieve the necessary data from the Page 

Model, which comprises the extracted webpage content semantics (namespaces omitted for 

brevity): 

SELECT ?page_product_id ?page_manufacturer 

 WHERE { 

?page_product gr:hasMPN ?page_product_id . 

?page_product gr:hasManufacturer ?page_manufacturer . 

  } 

Code 6-3. COIN: Example Page Model query. 

This query is applied on the Page Model, returning the unique identification (gr:hasMPN) and 

manufacturers (gr:hasManufacturer) of products found on the webpage. The second SPARQL query 

(see Code 3-2) is passed to the SCOUT framework (namespaces omitted for brevity):  
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 Equivalence relations such as owl:sameAs and owl:equivalentProperty can also be leveraged to determine 
equivalence between different resource URIs or properties. 
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 This is a simplified version of the actual query, since the Page Model contains reified data. For the complete 
query, we refer to Appendix C.2.1. 
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SELECT ?interest ?user_coords ?entity_coords ?shop_product_id 

 WHERE {  

  ?user rdf:type um:User ;  

   um:manufacturerInterest ?interest ; 

   sm:lastKnownLocation ?user_pos . 

  ?user_pos geo:xyCoordinates ?user_coords . 

 

  ?stat rdf:subject ?user ; 

   rdf:predicate sm:isNearby ; 

   rdf:object ?entity . 

 

?entity rdf:type sumo:RetailShop ; 

   region:sells ?shop_product ; 

   sm:lastKnownLocation ?entity_pos . 

  ?entity_pos geo:xyCoordinates ?entity_coords . 

  ?shop_product gr:hasMPN ?shop_product_id . 

}  

Code 6-4. COIN: Example context query. 

This query selects the manufacturers (um:manufacturerInterest) in which the user (type um:User) is 

interested, as well as the user’s current coordinates (sm:lastKnownLocation; geo:xyCoordinates), 

together with the absolute coordinates (sm:lastKnownLocation; geo:xyCoordinates) of nearby 

(sm:isNearby) shops (type sumo:RetailShop) and the unique identifiers (gr:hasMPN) of their sold 

products (region:sells).  

Next to these two queries, the developer specifies how the results from both queries need to be 

matched to determine relevant page elements. In our scenario, the developer specifies that the 

results for the ?page_product_id and ?page_manufacturer variables from the Page Model query (see 

query 1) should be equal to one or more ?shop_product_id and ?interest result from the context 

query (see query 2), respectively. In this way, we are able to identify products on the page 

(?page_product_id) sold by nearby shops (?shop_product_id), and with product manufacturers 

(?page_manufacturers) in which the user is interested (?interest). The developer can also register the 

second query with SCOUT, allowing the features to be kept up-to-date as the context changes. 

In order to plug the custom matching strategy into COIN, the developer creates an Element Selector, 

which is responsible for identifying page elements suitable for feature injection. In this selector, the 

two required queries, together with the matching specification (see above), are specified. Clearly, 

this option is only available in case the Context Repository provides SPARQL query access (e.g., either 

the repository keeps its data in RDF format, or it supplies a SPARQL layer across the data), which is 

the case for SCOUT. If this is not the case, or a more complex matching process is required, the 

developer may override the standard matching process with his own implementation. Element 

Selectors can be re-used for multiple feature injection scenarios, in case the features are injected 

into the same page content (e.g., highlight / inject contextual info into interesting articles).  

In case COIN is alerted of relevant context changes, the matching process will be repeated, based on 

the matching strategies encapsulated in the configured Element Selectors. Furthermore, during the 
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crawling process (see section 6.2.2.1), the matching step will be re-executed for each crawled page. 

The results of the matching process, including query results and identified page elements, are passed 

to the next step, where suitable context-aware features are injected. 

6.2.2.3 Adding context-aware features 

After the matching process has been performed, the necessary context-aware features are injected 

into the webpage. To realize this injection, adaptation techniques from the field of Adaptive 

Hypermedia are applied on the requested page. These adaptation techniques, according to [111] 

(which builds on the well-known taxonomy described by Brusilovsky in [112]), can be divided into 

three general categories: content adaptation (e.g., showing/hiding/altering content, emphasizing/de-

emphasizing content, dimming, stretchtext), adaptive navigation (e.g., link 

annotation/generation/hiding, adaptive guidance), and adaptive presentation (e.g., layout changes, 

sorting/ordering). We also introduce a new adaptation technique, namely (content) fragment 

annotation, which is not included in the taxonomy from [111] and fits into the content adaptation 

category. Since we are dealing with existing, third-party webpages, where adaptations may have 

unforeseeable effects on structure, we encourage developers to use non-intrusive techniques, such 

as emphasizing / de-emphasizing and stretchtext, as opposed to intrusive techniques such as layout 

changes and link re-ordering.  

As mentioned, the COIN software framework supports developers in defining custom, context-aware 

features. A particular feature, such as the recommend, guide and contextual info / aid features, 

require certain adaptation techniques to be applied on the page (e.g., contextual aid feature involves 

the link or content annotation techniques). COIN provides a predefined selection of adaptation 

techniques for these features, which can be fine-tuned or altered by the developer. After choosing or 

tweaking suitable features, the developer creates a Feature Generator to instantiate these features. 

In more detail, a Feature Generator instantiates (“generates”) suitable features for the page 

elements identified by an Element Selector (see section 6.2.2.2), and configures them to become 

context-aware. In order to perform this configuration, the Feature Generator has direct access to the 

matching query results. For instance, in our running example, the developer first utilizes the positions 

of the user and relevant nearby shops (obtained from the query results) to obtain detailed proximity 

information, including walking distance and directions (e.g., obtained via the Google Directions 

API120). Afterwards, the distance is used to configure the annotation color for the contextual aid 

feature (e.g., green for nearby; red for further away), and the contextual info feature is configured 

with the walking directions. 

After this configuration process, the Feature Generator returns suitable context-aware features to be 

applied on the page. Analogously to Element Selectors, Feature Generators can be re-used to realize 

various injection scenarios, in case the same configured features are involved (e.g., indicate distance 

to shops selling page products/theatres playing movies on page). 
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As the mobile user’s context changes, page adaptations need to be kept up to date over time. In case 

of a context change, the matching process is re-executed (see previous section), whereby the new 

matching results are passed to this step. In response, suitable context-aware features are re-

generated by custom Feature Generators. To avoid the same features being injected multiple times, 

and to reduce the complexity of the feature generation code, the COIN software processes the 

instantiated features behind-the-scenes. In particular, it checks whether the newly generated 

features require 1/ injecting new features; 2/ altering existing features, if the features were already 

injected with different parameters; 3/ removing existing features, in case the features were no 

longer generated (i.e., the particular page content is no longer context-relevant); or 4/ whether the 

generated features may be ignored, in case the exact same features were already injected. This 

relieves the developer of the complexity of these tasks.  

Existing Element Selectors, implementing a particular matching strategy, can cooperate with 

different Feature Generators to realize a range of context-aware feature injections. The developer 

specifies the cooperation between Element Generators and Feature Generators in a separate 

configuration file. 

   

           a) Guiding the user                 b) Relevant page 
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c) After context updates 

Figure 6-5. COIN: Shopping website screenshots. 

Figure 6-5 shows the results of feature injection on the shopping website from our running example. 

In Figure 6-5/a, the guide feature is injected in the visited webpage, which guides the user towards a 

page containing relevant products. This feature is realized by applying link annotation, which inserts 

a recognizable “pointing” icon next to the link. When the user arrives at the relevant page (see Figure 

6-5/b), COIN injects the recommend feature, thus recommending products of interest to the user. 

This feature additionally indicates why the product is being recommended (see “why?” keyword). 

The recommend feature is realized by applying the content annotation and stretchtext adaptation 

techniques. For instance, by clicking on the “why?” keyword, the reason for recommendation is 

revealed, which can be re-collapsed by clicking the keyword again.  

Furthermore, the user’s proximity to the shops selling the product is indicated. Firstly, the contextual 

aid feature is injected to indicate the distance to the shop; the green annotation border indicates the 

user is less than 50m from the shop; orange indicates a distance between 50m and 100m; and red 

indicates a larger distance. Secondly, the contextual info feature is applied, which inserts walking 

directions to those shops. Respectively, these two features are realized via the content annotation 

and stretchtext adaptation techniques. By clicking the “directions” keyword, the walking directions 

are revealed (see Figure 6-5/b). Finally, Figure 6-5/c illustrates how injected features are kept up-to-

date. As the mobile user is walking around, the shop selling the first smartphone is no longer nearby 

(red annotation border); while one or more shops selling the second smartphone have become 

nearby (green border). 
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Regarding implementation, the configured adaptation techniques are applied on the currently visited 

webpage via a custom Javascript component. We developed a custom Javascript library that 

implements each of the adaptation techniques described above. The Android-based COIN software 

communicates with this Javascript component over HTTP via the loopback interface (i.e., localhost).  

For all information regarding the running example, including the Element Selectors and Feature 

Generators code, Page Model and Environment Model instances, as well as the complete queries, we 

refer to  http://wise.vub.ac.be/william/phd/index.htm#coin. Appendix C.2.1 contains the 

complete queries. 

6.2.2.4 Deployment 

The COIN software framework consists of an Android application (tested on Android 2.2 using a 

Samsung Galaxy S) and a single Javascript file, comprising the Javascript library (see previous section). 

By installing our Mobile Firefox plugin (tested in Mobile Firefox 5.0), the Javascript file is inserted into 

a visited webpage automatically or on user-request, putting our Javascript library in place.  

6.3 AdaptIO 
Due to the ubiquity of mobile devices, mobile service interactions (e.g., agenda notifications, 

incoming calls) may occur in any situation, thus increasing their likelihood for obtrusiveness. 

Examples of obtrusive interactions include receiving loud notifications while in a meeting, or 

receiving personal messages while in company of others. To avoid such situations, the obtrusiveness 

of mobile interactions should be automatically adapted to suit the user’s current situation [113, 114]. 

When focusing on the mobility aspect, obtrusiveness adaptation should furthermore be applicable in 

any previously unknown, newly discovered heterogeneous environment. 

In order to determine the obtrusiveness of interactions, most approaches currently either rely on 

(semi-)automatic learning techniques [115] or on designer knowledge [6]. However, automatic 

learning techniques require training data [116] and time to adjust to new user behavior; while the 

designer cannot capture all situations influencing interaction obtrusiveness, for all users and in 

initially unforeseen environments (e.g., at a theatre or at work). Clearly, the only stakeholder capable 

of defining such situations accurately and unambiguously is the user himself. Furthermore, solely 

relying on local context data collected by sensors (e.g., microphones) or applications (e.g., agenda), 

as is done by other approaches [38], leads to inaccuracy and ambiguity in a priori unknown 

environments. For instance, simply turning up the ring volume in loud areas would not work while 

watching an action movie in a theatre. In order to allow defining and determining situations in 

previously unforeseen environments, we thus need to rely on rich environment data. For instance, by 

utilizing descriptive environment data, the user can specify that he is in a “quiet-place” whenever he 

is inside a place of type “Theatre”, thus defining situations in a more fine-grained and generic way. 

Our approach [30] adapts mobile interaction obtrusiveness in newly discovered environments, by 

exploiting rich environment context and putting the user in charge of defining relevant situations. 

http://wise.vub.ac.be/william/phd/index.htm#coin
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When considering the requirements for our approach, any solution should support sensing the 

necessary environment context data in heterogeneous environments, minimally (or not at all) 

outfitted with context-aware sensors. Furthermore, it should be fully autonomous, since no local 

server infrastructure may be assumed (e.g., deploying an OSGi121 installation [33, 117]). AdaptIO [33] 

is an existing obtrusiveness adaptation approach for mobile interactions, which is deployed on a 

centralized server (combined with a lightweight mobile client supplying interactions). In order to 

make the AdaptIO system autonomous and remove reliance on a server infrastructure, it was moved 

to the mobile platform. Furthermore, to support a priori unknown mobile environments, the AdaptIO 

approach was extended and aligned with the SCOUT framework. To sense rich environment context, 

SCOUT utilizes various detection techniques in parallel, thus supporting a range of heterogeneous 

environments. SCOUT runs entirely on the client-side, suiting the autonomous nature of the 

approach. Furthermore, SCOUT’s push-based query support allows mobile interactions to be adapted 

dynamically, as the mobile user encounters new situations. Finally, we extended SCOUT with 

semantic services support, in order to enable interaction with remote services in newly discovered 

environments; and allow adapting the obtrusiveness of such interactions as well. 

We further developed a user-friendly mobile interface, which enables users to expressively define 

the particular situations in which obtrusiveness adaptation should occur. In order to validate our 

interaction adaptation approach, where the mobile user becomes a major stakeholder, we evaluate 

the usability of the mobile user interface by means of a preliminary user study. 

This section is structured as follows. The next section positions our approach in the state of the art 

(section 6.3.1). Section 6.3.2 provides an architectural overview. In section 6.3.3, we summarize the 

approach methodology, discussing the tasks that need to be performed by the different 

stakeholders. Section 6.3.4 shows the evaluation results. 

6.3.1 Related work 

Several studies [115, 118] have been conducted on automatically adapting the modality 

configurations of mobile devices, based on user context. However, their focus is on context 

recognition, not on the modality configuration itself and how it influences obtrusiveness. Moreover, 

they rely on the designer to define the different user situations. In the area of mobile interaction 

obtrusiveness, research focuses on minimizing unnecessary interruptions for the user [119]. This 

problem has been addressed directly by means of models of importance and willingness [6]. Also, 

[114] uses context-aware mobile devices to calculate the adequate timing for interruptions. Sensay 

[38] infers the user’s context from a variety of sensed data, and determines whether or not the 

phone should interrupt the user while in regular communications. This research focuses primarily on 

determining when to interrupt for a particular application (i.e., either an interaction is allowed or 

not). In contrast, our approach performs an adaptation of interaction obtrusiveness, potentially 
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reducing the obtrusiveness of interactions to suit the user’s current situation. Furthermore, as far as 

we know, no approach provides support for newly discovered services. 

A number of approaches aim to facilitate mobile devices in interacting with newly discovered smart 

environments. For instance, the Smart Objects For Interactive Applications (SOFIA) project [120] 

interacts with new, heterogeneous smart environments (e.g., with legacy services, different data 

formats) by providing mobile applications with shared, interoperable information spaces. In [121], 

personalized service access is supported across different, heterogeneous environments. However, 

these approaches require environments to be outfitted with extra middleware, deploying their 

specific software. On the other hand, Mobile Ad-hoc NETworks (MANETs) enable mobile applications 

and services to directly discover and communicate with each other, without requiring an existing 

infrastructure (e.g., via event-based communication) [122, 123]. MANETs allow ad-hoc, loosely 

coupled communication with newly discovered services; however, approach-specific software needs 

to be deployed on each component. 

In contrast, we rely on open, minimally outfitted, and standards-based environments that do not 

require middleware. Instead, services are semantically described, and any coordination work is 

delegated to the client. In addition, by relying on well-known standards, any client can discover new 

services and interact with them, without requiring support for specific approaches. 

6.3.2 Architecture overview 

Our integrated system (see Figure 6-6) comprises three layers: the Environment Discovery and 

Management Layer, utilizing SCOUT to discover and manage previously unknown environments; the 

Services Layer, comprising interactive mobile services; and the Obtrusiveness Adaptation Layer, 

which employs AdaptIO to adapt mobile interaction obtrusiveness. Both the SCOUT framework and 

the AdaptIO system have been extended to support our goals; also, the AdaptIO system was moved 

to the mobile platform to ensure autonomy122. Figure 6-6 indicates new components for both 

systems in orange. Below, we elaborate on each of the layers. 

6.3.2.1 Environment Discovery and Management Layer 

This layer discovers a priori unknown (smart) environments, collects context data and enables 

interaction with environment services. To achieve this, it relies on the SCOUT framework. For context 

collection, SCOUT utilizes multiple detection techniques in parallel, relying on technologies such as 

QR codes, RFID/NFC, Bluetooth and GPS, thus supporting a range of heterogeneous mobile 

environments. To enable interaction with the user’s mobile environment, SCOUT was extended with 

semantic services support.  
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 Initially, the AdaptIO system was deployed on the OSGi platform. 
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Figure 6-6. AdaptIO: System architecture overview. 

Figure 6-6 (bottom layer) shows the SCOUT framework architecture. Below, we shortly recap existing 

parts, and discuss new models and components supporting the obtrusiveness adaptation approach. 

Via the Environment Notification Service and Environment Query Service, mobile applications are 

provided with push-and pull-based query access to the Environment Model (see Chapter 3, section 

3.4.3). This model keeps rich environment context and is comprised of the User Model, storing the 

user’s personal profile; the Spatial Model, specifying which people, places, things and services are 

spatially related (i.e., nearby or contained in one another); and online semantic data sources, which 

provide semantic data on such nearby entities. We further extended the Environment Model with 

the Service Model, storing the services detected in the user’s environment (see below). 

To support the upper layers in accurately inferring the mobile user’s current situation, SCOUT was 

extended with a general-purpose Reasoning Engine. Each time the mobile user’s environment 
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context changes, the engine (re-)evaluates the registered rules, potentially inferring new context 

facts. By encoding the user-defined situations (see section 6.3.3.2) as rules and registering them with 

this engine, the user’s current situation (i.e., new fact) can thus be automatically inferred.  

We extended SCOUT with mobile services support, which enables the discovery of remote services in 

the user’s environment and interacting with them. The Service Model keeps semantic descriptions of 

detected services in the user’s environment. In line with our goal to support interaction adaptation 

across new, heterogeneous environments, SCOUT focuses on lightweight smart environments. Such 

environments are outfitted with various sensing, actuation and information services that contain 

only the required service hardware and no external middleware. Instead, any discovery, invocation 

and orchestration work is delegated towards the client. To make this feasible, SCOUT relies on 

environments that are fully standards-based and contain semantically described services. Specifically, 

SCOUT relies on the following semantic service stack. The W3C Semantic Annotations for WSDL and 

XML Schema123 (SAWSDL) defines mechanisms to complement technical service descriptions (written 

using the W3C Web Service Description Language124 or WSDL) with concrete semantics. The Web 

Service Modeling Ontology (WSMO)-Lite125 builds on the SAWSDL mechanisms and extends them 

with a concrete ontology to semantically describe services. SCOUT converts and adds the online 

semantic service descriptions to the Service Model in RDF format, making them part of the 

Environment Model. Mobile applications can register a discovery query with the Environment 

Notification Service (or use the Environment Query Service), to find useful (nearby) services offering 

specific functionality (see section 6.3.2.2). Mobile applications interact with discovered services via 

the Service Invoker.  

In order to convert WSDL descriptions (with SAWSDL annotations) to RDF, part of the SOA4ALL 

iServe126 project code was extended and ported to Android. The Service Invoker uses the kSOAP2 

library to interact with SOAP services, while the Reasoning Engine is based on the Androjena127 

general-purpose rule engine. 

6.3.2.2 Services Layer 

The Services Layer (see Figure 6-6) comprises local and remote services that interact with the mobile 

user. Typically, plenty of local services or applications are running on a user’s mobile device (e.g., 

agenda, messaging services, shopping app), which may for instance notify the user in case of 

important events (e.g., agenda deadline, urgent message, good nearby deals).  

By leveraging the SCOUT services support (see section 6.3.2.1), remote services can also be plugged 

in, making their interaction capabilities available on the device. For instance, in Figure 6-6, a local 

tourism application enables remote tourist services to provide the user with information on good 
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nearby hotel deals, and nearby points-of-interest. As another example, a local movie application 

enables remote movie ticket services to notify the user, in case the particular movie theatre plays 

movies on the user's "to-watch" list. Such local applications register a discovery query with the 

Environment Notification Service from the Environment Discovery and Management Layer (see 

section 6.3.2.1). In case a relevant remote service is encountered, the application is notified, and 

utilizes the Service Invoker for remote communication. Based on the received data, the application 

provides notifications. For instance, these notifications can inform the user of good hotel deals in the 

vicinity (tourist service), or whether nearby movie theatres play interesting movies (movie service). 

Potentially, the user can hereby be provided with a link to a webpage where hotel bookings (tourist 

service) or movie tickets (movie service) can be purchased.  

The concrete service discovery scenarios and queries can be found in Appendix C.3.1, as well as on 

http://wise.vub.ac.be/william/phd/index.htm#adaptio. 

6.3.2.3 Obtrusiveness Adaptation Layer 

This layer intercepts interactions from mobile services in the Services Layer (see Figure 6-6), and 

adapts their obtrusiveness to suit the user’s current situation. Afterwards, it passes on the adapted 

interactions to the user. The layer utilizes and extends the AdaptIO system, a mobile adaptation 

approach that adapts service interaction obtrusiveness at runtime. AdaptIO is a model-based 

approach, where service designers declaratively specify the interaction adaptation behavior of their 

services in knowledge models (see section 6.3.3.1; for more information, we refer to [33]). In more 

detail, AdaptIO receives notifications from mobile services; chooses appropriate interaction 

resources (e.g., dialog, sound), based on the knowledge models and the user’s current situation; and 

utilizes those resources to present the interactions to the user. Below, we elaborate on the main 

components and the communication between them. 

Firstly, AdaptIO was extended with the User Situation Inferencer, which determines the user’s 

current situation and notifies other components of changes. This component encodes the user-

supplied situation definitions (see Situation Specification Interface below) as logic rules, and passes 

them on to the Environment Discovery and Management Layer. There, the Reasoning Engine uses 

them to accurately infer the user’s situation. If a new situation is inferred, the layer’s Environment 

Notification Service notifies this component. 

The Reconfiguration Engine determines which high-level interaction resources should be used for 

each service’s interaction, based on 1/ the user’s current situation and 2/ the aforementioned 

knowledge models. If alerted by the User Situation Inferencer of a new user situation, the engine 

consults these knowledge models to retrieve the interaction resources that best suit the user’s new 

situation. The Interaction Controller converts these abstract interaction resources (e.g., dialog) to 

concrete platform-specific (e.g., Android) interaction components, thus decoupling the knowledge 

models from the concrete deployment platform.  

http://wise.vub.ac.be/william/phd/index.htm#adaptio
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The Notification Manager receives pro-active interactions (i.e., notifications) from mobile services 

and relays them, together with the service’s latest interaction components obtained from the 

Reconfiguration Engine, to the Service Interaction Interface. This interface displays the notifications 

to the user, employing suitable interaction components. 

Finally, AdaptIO is extended with a Situation Specification Interface. This interface allows users to 

expressively define their situations, utilizing the environment context data from the Environment 

Discovery and Management Layer. Situation definitions are passed to the User Situation Inferencer, 

allowing the component to infer the user’s current situation. Section 6.3.3.2 elaborates on the UI.  

The Reconfiguration Engine is based on MoRE [120], which we ported to Android and is based on 

Autonomic Computing principles [124]. To query the knowledge models at runtime, we rely on a 

ported version of the Eclipse Modeling Framework Model Query128 plugin. The model-handling 

operations are described in [125]. 

6.3.3 Methodology 

In this section, we elaborate on the approach methodology and detail the tasks that need to be 

performed by the two stakeholders, namely the service designer and user. The designer is 

responsible for creating the knowledge models, which capture the service’s desired behavior for 

adapting interaction obtrusiveness. On the other hand, the user is in charge of specifying situations 

across which the obtrusiveness of interactions differ (e.g., in a meeting vs. free-time). Supporting the 

user in this task, our approach provides a user-friendly mobile interface called the Situation 

Specification Interface, which leverages environment context. Below, we elaborate on the designer’s 

tasks (section 6.3.3.1). Section 6.3.3.2 discusses the Situation Specification Interface. 

6.3.3.1 Service Designer: Adaptation Behavior Specification 

In order to model the interaction obtrusiveness of services, we use the conceptual framework for 

implicit interactions presented in [126]. This framework defines two dimensions to characterize 

interactions: initiative and attention. Regarding the initiative factor, our approach focuses on 

proactive interactions (or notifications), where the system takes initiative and the user is potentially 

interrupted. The attention factor concerns an interaction’s attentional demand, which can be 

represented on an axis. For our purposes, we divided the attention axis in three segments: invisible 

(user does not perceive the interaction), slightly-appreciable (user does not perceive the interaction, 

unless he makes an effort), and user-awareness (user is completely aware of the interaction, even 

while performing other tasks).  

In our approach, the service’s potential levels of interaction obtrusiveness correspond to the 

attention axis segments. It can further be observed that, depending on the user’s situation, the 

service’s currently desired obtrusiveness level will vary. To capture this information, the designer 

creates the first knowledge model, namely an obtrusiveness model, which contains a state machine. 
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Each state corresponds to an obtrusiveness level, and the guard conditions of the state transitions 

reference a user situation. The services’ obtrusiveness models are checked by the Reconfiguration 

Engine (see Figure 6-6) whenever it receives a new user situation; if any transition matches the new 

situation, it is fired, leading to a new obtrusiveness state for the service. In Figure 6-7, we show the 

state diagram of a service that displays incoming messages.  

 

Figure 6-7. AdaptIO: Obtrusiveness state diagram for a messaging service. 

When the user arrives at work (@work situation), the messaging service passes to the slightly-

appreciable state, thus reducing notification obtrusiveness when the user is working. When the 

system determines that the user is no longer working (@free-time situation), the service goes back to 

the user-awareness state, again increasing notification obtrusiveness. In case the system determines 

the user is in a meeting (@meeting), the service passes to the invisible obtrusiveness state, making 

sure the user is not disturbed. In addition, if the user is in the company of others (@with-company) 

while the service is at the maximum obtrusiveness level (i.e., user-awareness), the messaging service 

transitions to the slightly-appreciable level, so the user is not overly disturbed while socializing.  

Each of the obtrusiveness states is supported by the appropriate interaction resources. In the second 

knowledge model, the interaction model, the designer associates interaction resources with each 

obtrusiveness level. For instance, the slightly-appreciable level is associated with the following 

interaction resources:  

- Haptic 

o Vibration 

- Visual 

o Property 

 Momentary 

o Lights 

o Text 

o Image 

Note that the auditory modality has been deactivated for the slightly-appreciable level, leaving only 

visual and haptic. Regarding the haptic modality, the vibration resource is enabled, while the lights 

(e.g., LED flash for Android), text and image visual resources are activated as well. The Momentary 

property indicates any visual resource will only be shown for a brief moment.  
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Whenever a transition fires in a service’s obtrusiveness model, thus leading to a new obtrusiveness 

state, the Reconfiguration Engine (see Figure 6-6) consults the service’s interaction model, to retrieve 

interaction resources suiting the new obtrusiveness level. 

The knowledge models are re/presented in XML Metadata Interchange standard (XMI)129.  The 

obtrusiveness and interaction model for our example messaging service can be found in Appendix 

C.3.2, as well as a model describing the available interaction resources (haptic, visual, and auditory). 

Multiple example knowledge models can be found on 

http://wise.vub.ac.be/william/phd/index.htm#adaptio. 

6.3.3.2 Service User: Situation Specification  

In order to guarantee accurate and unambiguous situation definitions, users are put in charge of 

defining their own relevant situations. We developed a mobile interface that allows users to perform 

this task in a generic and fine-grained way, based on environment context. To increase usability and 

support nomadic users in a wide range of environments, the interface also supports capturing user 

situations. Below, we first discuss how the user can manually specify situations, and then how he can 

use the “capture” functionality.  

Manually specifying situations 

   

            (a) Situation overview                 (b) Specification options                      (c) Define via location 

Figure 6-8. AdaptIO: Situation Specification Interface screenshots (1). 

In the first screen (see Figure 6-8/a), the user chooses to define a still undefined situation 

(referenced in the deployed services’ obtrusiveness models), or edit an already defined one. In the 

second screen (see Figure 6-1/b), he can define the chosen situation using the location and time 

options. A third, more advanced “free-form” option allows the user to place arbitrary constraints on 

his environment (see below). Using the location option, the user describes the location(s) he is in 
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while being in the chosen situation. For each location (see Figure 6-8/c), the user specifies whether 

he is inside or nearby a certain place, person or thing (i.e. physical entity) in that situation, and 

provides a way to identify that physical entity via its type and/or unique identification (URI). The user 

is aided via auto-complete functions: the type field suggests terms from well-known ontologies, as 

well as synonyms of the ontology terms (provided by WordNet); while the URI field suggests URIs 

that identify physical entities the user has encountered (this information is obtained from the 

Environment Discovery and Management Layer). The user can also specify time intervals (i.e., days of 

the week and time span) during which he is in the situation (see Figure 6-9/a). We note that, in case 

multiple locations / time spans are specified (e.g., see Figure 6-1/c), the user will be in the particular 

situation in case he is in one of those locations / current time falls into one of the given time 

intervals. When multiple options are employed at the same time (e.g., location and time), the user 

will be in the specified situation only if both defined options are satisfied; for instance, when the user 

is at (one of) the defined location(s) and in (one of) the specified time interval(s). 

The advanced, “free-form” option (see Figure 6-9/b) allows defining situations in a more powerful 

and expressive way, by placing arbitrary constraints on the user’s environment context. A constraint 

consists of a property and a value field. A user may arbitrarily constrain a property value, either by 

providing a concrete string or by linking its connector to other constraints. This free-form option, 

with connectable components, resembles the popular Yahoo! Pipes online mashup tool130. In this 

example, the user is inside his office during the @work situation. To describe this in a generic way, 

the user specifies the inside property, and creates two constraints on the place he should be inside 

of. The first constraint states the type of the place should be “Office”, while the second specifies the 

place is the user’s office (via the housesPerson property). Using the constraint’s connectors, the user 

connects the two new constraints to the first constraint’s value field. The property and value fields 

are respectively backed by the same two auto-complete functions mentioned above.  

   

            (a) Define via time        (b) Free-form option                (c) Captured locations 

Figure 6-9. AdaptIO: Situation Specification Interface screenshots (2). 
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Capturing situations 

The “capture” option exploits the user’s current environment to quickly and easily specify situations. 

In this option, the user takes a snapshot of his environment, fine-tunes it, and attaches it to a 

situation. For example, the user is sitting in a movie theatre, and one of the services produces a loud 

notification. The obtrusiveness model, defining the service’s adaptation behavior (see section 

6.3.3.1), makes sure notifications are handled at the invisible obtrusiveness level in an @quiet-place 

situation (e.g., classroom). However, mobile users are typically nomadic and move in a wide range of 

(previously unknown) environments, making it difficult even for them to foresee every situation-

relevant environment (e.g., movie theatre). After quickly (and manually) turning off the device’s 

sound, the user selects the capture option. This option re-uses the screens from the previous 

“define” option (see previous section) and populates them, based on the user's current environment 

context. The user selects the location aspect (see Figure 6-9/c), and sees that the “inside 

MovieTheatre” location is present, as well as some other captured locations (e.g., “nearby Cafe”). He 

then removes the irrelevant locations, and also unchecks the time and free-form option, since they 

are not relevant in this case (e.g., see Figure 6-8/b). In the final screen, the user attaches the fine-

tuned context data to the @quiet-place situation, ensuring the invisible obtrusiveness level will be 

utilized in movie theatres as well. 

6.3.4 Evaluation 

User acceptance of the general obtrusiveness adaptation mechanism has already been evaluated in 

previous work [33]. Therefore, this work focuses on evaluating the mobile user’s new role in our 

extended approach; namely, specifying his own obtrusive situations, utilizing our mobile interface 

and leveraging environment context. We validated the usability and expressivity of the Situation 

Specification Interface by means of a user evaluation, where users had to specify six situations of 

varying complexity via the definition and capturing options (see section 6.3.3.2). The final, most 

complex situation required using the more advanced free-form option. In each user session, we took 

five minutes to shortly explain the interface, and then let the user specify the described situations. 

We noted the required time, as well as any encountered difficulties and errors during their task. 

After performing their task, the users filled out the Post-Study System Usability Questionnaire 

(PSSUQ) [127]. A total of 8 subjects participated in the experiment (5 male and 3 female), between 

the ages of 25 to 35. All of them had a strong background in computer science, being students or 

researchers; they were also familiar with the use of a smartphone, and 4 out 8 own an Android 

smartphone similar to the one used in the experiment. For detailed information on the task 

situations, as well as experimental setup and results, we refer to [30].  

Figure 6-10 shows a summary of the PSSUQ questionnaire results. Overall, users found the interface 

simple to use (questions 1, 2) and very easy to learn (7), while they also felt they could complete 

tasks effectively (3) and quickly become productive using the system (8). Users found the provided 

information more or less clear (11), easy to find (12) and understand (13), and clearly organized (15). 

Overall, around 80% of the users found the interface pleasant (16), and 75% liked using the interface 
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(17). Averaging the results, on a scale from 1 (strongly agree) to 7 (strongly disagree); overall 

satisfaction was 3.09, usefulness was 3.2, information quality was 3, and interface quality was 3.04.  

 

Figure 6-10. AdaptIO: Summarized questionnaire results. 

On average, users took about 13 minutes to specify all situations. One user had initial difficulty with 

the location method (see section 6.3.3.2); but the other users had no problems. Six out of seven 

users had difficulty using the free-form method while testing the defined option; on the other hand, 

they found using this method easier when “capturing” situations. 

In conclusion, the evaluation shows the interface to be usable and expressive, allowing users to 

specify non-trivial situations within a short time span. Moreover, the capture option makes it very 

simple to specify most situations. The free-form method, which allows for more generic and complex 

situation definitions, proved to be more difficult to use and have a steep learning curve. However, 

using this option becomes much easier during capturing, since users were able to fine-tune a given 

free-form specification instead of creating one from scratch. 

6.4 Summary 
This chapter presented three mobile applications, each of which is built on top of SCOUT and relies 

on its context access features. Each application hereby yields contributions in its respective domain. 

Below, we shortly summarize each application. 

The Person Matcher [31] relies on SCOUT’s ability to detect other people in the vicinity of the user. 

More specifically, the SCOUT push-based query access is utilized, in order to be notified of nearby 

people and their online FOAF profiles. Based on the user’s and detected persons’ FOAF networks, it 

performs a detailed compatibility check and notifies the user in case interesting people are detected. 

This compatibility check involves crawling both FOAF networks, up to a configurable degree, and 

finding connections between the networks. For instance, an example connection constitutes a friend 

of the user working at the same research institute as the detected person. The mobile user can 

specify the kind of people he is interested in via configurable weighting schemes. A mobile user 

interface enables users to retrieve more information on found matches (e.g., connections between 

the networks), and allows different weighting schemes to be downloaded and plugged in. 
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COIN [29] is a mobile, client-side web augmentation system, which automatically injects context-

aware and personalized features. Importantly, this system does not require an expensive re-

engineering of the website, since the enrichment is performed on-the-fly as the user is visiting 

existing websites. COIN is based on the increasing availability of semantic information in websites 

(e.g., via RDFa, microformats), which enables COIN to obtain knowledge on the meaning of existing, 

third-party page content. In order to enrich websites to suit the mobile user’s needs (e.g., annotate 

products sold by nearby shops), COIN further requires access to rich environment context. The 

SCOUT framework is utilized to retrieve the required context data in a push- and pull-based way. 

Furthermore, the non-centralized nature of SCOUT perfectly suits the client-side COIN approach, as 

the necessary context is directly available locally. 

The generic approach to context-aware feature injection consists of three steps. First, semantic 

information on the website contents is extracted, both from the requested webpage and potentially 

pages linked by this requested page as well. In the second step, the extracted semantic information is 

matched to the user's context, with the goal of finding page content that can be enhanced with 

context-aware features. In the third step, features are injected into the identified content, by 

applying existing adaptation techniques. The second (matching step) and third (feature injection) 

steps are repeated for each crawled webpage, and in case of certain context changes. 

We implemented COIN as an extensible software framework for the Android platform (version 2.2), 

where different components can be plugged in at each step. For instance, context-provisioning 

systems other than SCOUT can be utilized as well, given they provide the necessary context data in a 

push-based way. 

The AdaptIO system [30] dynamically adapts the obtrusiveness of mobile interactions to suit the 

mobile user’s situation (e.g., being in a meeting, or at lunch). In mobile and nomadic settings, 

obtrusiveness adaptation should be applicable in any newly discovered, heterogeneous environment, 

likely lacking any context-aware infrastructure. We achieve this challenge by putting the user in 

charge of defining obtrusive situations, and exploiting rich environment context. Moreover, the 

existing AdaptIO system was moved to the mobile platform, to avoid reliance on a server 

infrastructure. By utilizing the SCOUT framework, the necessary environment context data can be 

supplied in a push-based way, across heterogeneous surroundings lacking context-provisioning 

middleware. In order to enable interaction with environment services as well, SCOUT was extended 

with standards-based semantic services support.  

We further developed a mobile user interface that enables users to define their own obtrusive 

situations, based on collected environment context. In order to support the nomadic nature of 

mobile users, the interface also supports capturing situations, whereby the mobile user's current 

context is used to quickly define new obtrusive situations. Finally, a user study was performed to 

evaluate the usability and expressivity of the interface. 



 

 

 



 

 

 

Chapter 7  

Conclusions and future work 

In this final chapter, we seize the opportunity to reflect on the results of this dissertation, and look 

forward to possible future work and new research directions. This chapter is structured as follows. 

Section 7.1 summarizes the presented work. In section 7.2, we discuss the main contributions and 

achievements of this dissertation. Section 7.3 lists limitations of the presented work. In section 7.4, 

articles publishing the work presented in this dissertation are listed.Finally, section 7.5 presents 

future work.  

7.1 Summary 
In this dissertation, we presented a mobile, client-side context-provisioning framework called 

Semantics COntext-aware Ubiquitous scouT (SCOUT). Mobile applications can utilize this software 

framework to obtain rich knowledge on the user’s context and physical surroundings (or 

environment). In order to supply integrated query access to the collected environment context, 

SCOUT relies on a general-purpose mobile query service, which was also introduced in this 

dissertation.  

Below, we first summarize the SCOUT framework (section 7.1.1). Then, we shortly review the mobile 

query service (see section 7.1.2). 

7.1.1 SCOUT framework   

Each task performed by SCOUT, including detection, spatial information inferring, and data 

integration, is clearly separated and encapsulated into a distinct layer of the framework architecture. 
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This way, different technologies and mechanisms can easily be plugged in at each level, without 

requiring changes to the other layers. At the end of the section, we shortly recap the proof-of-

concept applications built on top of SCOUT.  

Below, we first summarize the different tasks performed by SCOUT:  

Detection: SCOUT automatically detects physical entities in the user’s vicinity, and identifies their 

associated online semantic data sources. For instance, using a built-in RFID reader, tags put on 

nearby physical entities (e.g., person) can be detected, and their contents read to obtain URLs of 

associated online data (e.g., FOAF profile). 

For this purpose, the SCOUT framework relies on so-called detection techniques. Two kinds of 

detection techniques are distinguished; direct, which employ a hardware component (e.g., RFID 

reader) to detect entities and locate associated online data; and indirect, which perform these tasks 

by passing on local context (e.g., GPS position) to third-party services (e.g., online geographic 

directory). By utilizing multiple detection techniques interchangeably and in parallel, SCOUT can be 

deployed across heterogeneous environments with varying sensing support (e.g., RFID, Bluetooth; or 

GPS, if no tags or sensors are available). 

Inferring spatial information: Based on detection and location data, high-level spatial information is 

inferred. Such spatial data denotes whether the user is nearby or inside other physical entities (e.g., 

building, person), and whether physical entities themselves are spatially related (e.g., user’s hotel 

and nearby public transportation hubs). 

By supplying such high-level spatial data, mobile applications can abstract from low-level detection 

and location data, such as detection distances and absolute coordinates. A flexible mechanism is in 

place, centered on a spatial index, to actively keep spatial information up-to-date. Importantly, this 

mechanism can deal with detection data of varying accuracy, thereby supporting a wide range of 

detection techniques (see above). In particular, we apply a custom process to convert inaccurate 

detection data into spatial shapes for indexing; whereby spatial shapes represent the geometric 

shapes and absolute coordinates of detected entities.  

Data integration: Given the located online semantic data and inferred spatial information, SCOUT 

provides integrated query access to the collected context and environment data. Mobile applications 

can pose queries in a push- and pull-based way, to retrieve any piece of information on the user’s 

environment context. 

SCOUT keeps and maintains multiple models and components to realize this query access. The 

Spatial Model stores spatial relations between physical entities and the user, which reflect the spatial 

information passed from the Spatial Layer. The User Model stores information useful for 

personalization (e.g., device properties, user preferences). Finally, the Environment Model stands for 

an abstract, integrated view on the user’s current and previous environment, and includes the two 

aforementioned concrete models together with the identified online semantic data sources. Mobile 
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applications access the Environment Model in a push- and pull-based way, respectively by utilizing 

the Environment Notification Service and Environment Query Service components. 

We discussed three proof-of-concept applications built on top of SCOUT, which rely on the 

aforementioned context access features to realize their own functionality. Each of these applications 

yield a contribution in their respective domains. The Person Matcher [31] pro-actively identifies 

nearby people of interest, based on their FOAF networks, and pushes them to the user. In order to 

be notified of nearby people and their online FOAF profiles, the Person Matcher relies on the push-

based query access supplied by SCOUT. COIN [29] is a mobile, client-side web augmentation 

approach, which automatically injects useful context-aware features into websites. In order to 

determine mobile user needs, COIN utilizes the SCOUT framework to gain push- and pull-based query 

access to rich environment context. The AdaptIO system [30] dynamically adapts the obtrusiveness 

of mobile interactions to suit the mobile user’s current situation. In order to accurately define and 

determine obtrusive situations (e.g., in a meeting), AdaptIO employs SCOUT to access environment 

context, across heterogeneous (and potentially minimally outfitted) mobile environments. 

7.1.2 Mobile query service 

In the SCOUT framework, the Environment Model represents an abstract, integrated view on the 

user’s (current and previous) surroundings. An essential part of this model consists of the online 

sources detected by SCOUT, describing physical entities in the user’s surroundings. In order to 

transparently query this online semantic dataset, SCOUT relies on the mobile query service 

presented in this dissertation. This general-purpose query service enables any client to query a 

currently untapped part of the Semantic Web, comprising of large amounts of relatively small online 

sources. Clients are hereby able to outline their relevant selection of online semantic data; for 

instance, data describing nearby detected entities (SCOUT), historic and cultural information (tour 

guides) [128], or descriptions of items to be recommended (recommender systems) [85]. Below, we 

discuss the challenges and requirements for the mobile query service, as well as the presented 

solutions and their implementations. Then, we indicate the results of our experimental validation of 

the query service.  

A number of issues and challenges arise in our particular querying scenario. Firstly, it is not feasible 

to locally query the entire relevant dataset (e.g., the dataset should be kept in-memory to enable fast 

querying). Consequently, a first challenge is to reduce the total query dataset, to make local 

querying feasible. Furthermore, our query dataset is located online and captured in individual files. 

To reduce the resulting high data retrieval costs and decrease the effects of connectivity loss, a 

second challenge is to minimize the number of source downloads. Two solutions naturally present 

themselves to meet these challenges. By identifying online data relevant to posed queries (Identify 

relevant online sources), the final query dataset is reduced (see first challenge). Furthermore, since 

only sources comprising query-relevant data need to be downloaded, our second challenge is also 

met. Secondly, by locally caching data likely to be frequently referenced (Locally cache data) fewer 

sources need to be downloaded to serve queries (see second challenge). To further address our 
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challenges, any software component implementing these solutions should meet two key 

requirements. Firstly, components should perform fine-grained data identification and retrieval, 

allowing the total query dataset to be further reduced (see first challenge), and more unnecessary 

downloads to be avoided (see second challenge). Secondly, components should reduce memory 

usage and processing effort, to cope with the fact that mobile hardware is still relatively limited 

compared to larger devices (e.g., desktop computers, laptops). 

The mobile query service implements the aforementioned solutions via the following components: 

the Source Index Model (SIM), which identifies query-relevant online sources by indexing source 

metadata (i.e., predicates and resource types); and cache components locally caching source data, 

including the Source Cache and Meta Cache, two alternatives that respectively organize the cache 

based on origin source and shared metadata. By developing and evaluating these two separate cache 

components, we investigate the impact of source metadata on data selectivity and performance. For 

the same purpose, we developed three separate SIM variants keeping increased amounts of source 

metadata. By focusing on source metadata (i.e., predicates and subject/object types), we aim to 

achieve a balance between fine-grained data identification retrieval and memory / processing 

overhead (see requirements). We note that, by additionally keeping information on previously 

removed data (i.e., after clearing storage space), the Meta Cache is also able to perform the source 

identification task. Therefore, in order to deploy both solutions, the mobile query service either uses 

1/ the SIM combined with the Source Cache; or 2/ the stand-alone Meta Cache. We apply a data 

validity strategy to ensure the freshness of the cached data. 

For the Meta Cache, we introduced a removal strategy called Least-Popular-Sources (LPS), which 

suits our particular setting where data is captured in online sources. We call LPS a source-based 

removal strategy, since it identifies cached data to be removed via their origin source. This removal 

strategy takes into account the “popularity” of online sources as indicated by 1/ the popularity of its 

source data, i.e., the number of stored cache units containing the data, and 2/ the popularity of its 

own metadata, i.e., how often the contained metadata is found in other sources. By considering the 

first factor, we reduce the probability of a cache miss; while the second factor helps to keep the 

number of source re-downloads per cache miss in check. In case it can be assumed that popular 

metadata combinations are more likely to be referenced by posed queries, this second factor may 

also help to reduce cache misses. Additionally, download cost can be considered, making it less likely 

that sources with high download times are removed.  

Semantic Web technologies implement the Open World Assumption (OWA), in order to support the 

vision of the Semantic Web as an open, interlinked web of data. We note that, due to the OWA, any 

online source may specify extra statements for RDF resources. In the case of the mobile query 

service, this means newly encountered sources may specify extra types for already processed source 

data; potentially leading to indexed source metadata to become out-of-date. In order to keep query 

service metadata up-to-date, resource type information should be tracked across sources, and 

component data structures need to be updated when necessary. We call this updating process type 
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mediation. On the other hand, we note that in case such cross-source typing issues do not occur in 

the online dataset, or can be excluded (e.g., in case there is control over online sources, the sources 

can be supplemented with the missing types), type mediation can be disabled. We further note that 

other approaches, which integrate semantic data from multiple sources, also encounter this problem 

but do not consider it in their work [12, 67, 68]. Secondly, by leveraging logical axioms from OWL 

ontologies, source metadata retrieved from online sources (i.e., types), as well as search constraints 

extracted from posed queries, can be enriched. This process is called type inferencing. In case type 

inferencing is applied to enrich source metadata, additional query-relevant data can be identified 

and returned; when search constraints are extended, increased amounts of irrelevant data can be 

ruled out. The type inferencing feature may be enabled or disabled, depending on the needs of 

mobile applications and device capabilities (cfr. inferencing support by RDF stores). 

We performed an experimental validation of the mobile query service, where the performance of the 

major query service components was measured, taking different variants and configurations into 

account. The experiments showed that, by performing the source identification and local caching 

tasks, the query service is able to supply realistic query performance. Furthermore, we observed that 

leveraging source metadata indeed allows a balance between fine-grained data identification 

retrieval and performance overhead. Reflecting this observation, the Meta Cache component turned 

out to provide the best performance. By additionally applying the LPS removal strategy on Meta 

Cache, the amount of cache misses and resulting source re-downloads can be kept in check, further 

increasing querying performance. At the same time, we note that overall execution times are still 

high for the best performing Meta Cache configuration (i.e., utilizing LPS), ranging from 1,5s to 1,5m. 

However, most of the responsible overheads, including persistent loading times and source 

download times, are in the end unavoidable in a setting where memory and storage is limited; while 

the individual query execution times are bound by the utilized query engine. Finally, the OWA 

features proved useful in improving data access. However, the experiments showed that type 

inferencing and type mediation currently exhibit impractical performance, necessitating more 

advanced components or increased mobile device resources.  

7.2 Contributions 
In this section, we summarize the contributions resulting from the work in this dissertation. We 

discuss the contributions related to the SCOUT framework (section 7.2.1) and the mobile query 

service (section 7.2.2), as well as the individual contributions made by the mobile applications built 

on top of SCOUT (section 7.2.3). 

7.2.1 SCOUT framework 

In this section, we discuss the contributions concerning the SCOUT framework. 

Mobile, client-side context-provisioning: We presented a mobile, client-side context-provisioning 

framework called SCOUT (Semantics-based COntext-aware Ubiquitous scouT) that runs entirely on 
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the mobile device. Importantly, SCOUT proves that mobile, client-side context-provisioning – 

including the context gathering, interpretation, integration and dissemination tasks described below 

– is feasible on mobile devices.  

Support for heterogeneous environments: SCOUT can be deployed in a range of heterogeneous 

environments, suiting the nomadic nature of mobile users. This is realized by utilizing multiple 

detection techniques (e.g., utilizing RFID, GPS coordinates) interchangeably and in parallel, to detect 

online semantic data describing the user’s surroundings. This aspect of supporting newly discovered, 

heterogeneous environments via the deployment of multiple detection techniques is currently not 

considered in the state of the art. 

Semantic Web as information platform: In contrast to most existing context-provisioning approaches, 

SCOUT does not rely on external context providers or proprietary servers to retrieve (static) context 

data on the user’s environment. Instead, SCOUT leverages the Semantic Web itself as an information 

platform, in order to retrieve rich semantic data on the user’s environment. 

Inferring spatial information: We present a flexible mechanism to infer high-level spatial information, 

based on inaccurate raw detection and location data. Due to this spatial information, mobile 

applications can easily access location-related data while ignoring low-level details. Furthermore, by 

allowing detection data of varying accuracy, we support the range of detection techniques utilized to 

discover the user’s environment.  

Rich semantic query access: SCOUT supplies integrated, semantic query access to the collected 

context, in a push- and pull-based way. To our knowledge, there is no current work that presents 

semantic, push-based query access to integrated context.  

7.2.2 Mobile query service 

In this section, we elaborate on the contributions pertaining to the mobile query service. 

Mobile, client-side integrated querying: We introduced a mobile query service that enables the 

transparent, integrated querying of large amounts of small online semantic sources. It hereby 

supplies configurable support for the Semantic Web’s Open World Assumption, applying type 

inferencing and introducing a process called type mediation. The query service is deployed entirely 

on the mobile device, thus demonstrating the feasibility of performing indexing and caching tasks at 

the client-side.  

Unlocking part of the Semantic Web: Currently, mobile applications need to rely on online query 

endpoints to access online Semantic Web data; which makes a large part of the Semantic Web, 

consisting of RDF files and semantically annotated websites, currently inaccessible. By providing 

integrated query access to such small online sources, the query service unlocks this Semantic Web 

segment for mobile applications. 

Online source identification: We introduce an indexing component called the Source Index Model, 

which identifies query-relevant data sources by indexing metadata from online sources. We 
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demonstrate that, by focusing on indexing source metadata, high source selectivity can be achieved 

while still guaranteeing minimal memory and performance overhead. In contrast, related approaches 

often index instance data (e.g., RDF stores) or resource constraints / selectivity estimates (e.g., query 

distribution), which takes up more space and requires a larger performance effort. 

Local source data caching: We present a caching component called Meta Cache, which locally caches 

downloaded data and organizes the data according to shared source metadata. We show that by 

focusing on source metadata, a fine-grained retrieval of cached data can again be realized, without 

overly compromising memory usage and processing times. To our knowledge, no existing caching 

system organizes the cached data according to its inherent semantics (i.e., types, predicates).  

Tailored removal strategy: We present the Least-Popular-Sources (LPS) removal strategy, fine-tuned 

to our setting where data is captured in online files. It was demonstrated that this removal strategy 

significantly increases the querying performance of the Meta Cache component, by reducing cache 

misses and resulting source re-downloads. 

7.2.3 Applications using SCOUT 

Other contributions worth highlighting are the ones made by approaches leveraging the SCOUT 

framework. We shortly summarize these contributions below: 

- The Person Matcher [31] is a mobile application that automatically finds interesting people in the 

user’s vicinity. We presented a matching algorithm that performs a detailed crawling of FOAF 

networks, in order to find connections or overlaps. To realize its functionality, the mobile 

application relies on the pro-active data filtering support provided by SCOUT, in the form of 

push-based queries.  
 

- COIN [29] represents a mobile, client-side web augmentation application, which makes existing 

websites context-aware by injecting context-aware features on-the-fly. As an important 

contribution, COIN can be applied to existing websites lacking pre-engineered adaptation 

support, and without requiring client-side strategies hard-coded to specific website DOMs. This is 

done by exploiting semantic annotations in websites (e.g., via RDFa) to automatically identify 

suitable locations for feature injection. In order to obtain pull- and push-based access to rich 

environment context, and allow the approach to be deployed entirely on the client-side, COIN 

relies on the SCOUT framework.  
 

- The AdaptIO system [30] automatically adapts the obtrusiveness of mobile interactions to suit 

the mobile user’s situation. In contrast to existing approaches, we aimed to provide 

obtrusiveness adaptation support in a priori unknown, newly discovered environments, suiting 

mobile users’ nomadic nature. For this purpose, we put the mobile user in charge of defining his 

own situations, and leveraged rich environment context to determine the user’s current 

situation. This contribution was made possible via the SCOUT framework, as it allowed AdaptIO 
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to obtain rich environment context in heterogeneous mobile environments, and be deployed 

autonomously on the mobile device. 
 

7.3 Limitations 
As any research effort, this dissertation focuses on particular research problems. This requires setting 

clear boundaries, and accepting the resulting limitations. Below, we summarize these limitations for 

the work presented in this dissertation, namely the SCOUT framework and mobile query service. 

7.3.1 SCOUT framework 

Below, we discuss boundaries and limitations related to the SCOUT framework. 

Focus on location-related data: The SCOUT context-provisioning framework automatically discovers 

online semantic sources describing the user’s current surroundings. As such, the data discovery 

process is driven by the user’s current location. Our focus on location-related data is further 

illustrated by the spatial data inferring task (see section 7.1.1), which converts detection and location 

information into high-level spatial data. The underlying rationale is that mobile users typically require 

information related to their current surroundings (e.g., which is the next train back home from this 

station, or where can I have a nice lunch in this neighborhood). Due to this focus, data related to 

other context factors is not considered at this point, for instance, profiles of people the user is 

meeting with, as retrieved from his calendar (also called future context) [12]. 

Dataset with static information: The SCOUT framework aims to supply rich environment context, 

describing the user’s current surroundings. Currently, this context data comprises static data, 

retrieved from online sources such as RDF files and websites, and does not include dynamic 

information obtained via e.g., remote sensors. Supporting the efficient retrieval of dynamic data in 

mobile settings requires special consideration, which was not the goal of this work. 

Dataset consisting of small online sources: SCOUT does not rely on centralized information systems, 

datasets or query endpoints to retrieve descriptions on the user’s surroundings. Instead, SCOUT 

leverages the Semantic Web itself as an information platform, automatically collecting online data 

sources associated with the user’s surroundings. This decision was made to ensure SCOUT is 

deployable in an autonomous way, independent of any (proprietary) server infrastructures. 

Furthermore, this allows content providers (e.g., place owners, tourist services) to keep only one 

information source, such as a semantically annotated website that is both human-readable and 

consumable by arbitrary software clients. At the same time however, this assumes that physical 

entities in the user’s vicinity (people, places and things) are indeed described by (small) dedicated 

online semantic sources. Another assumption is that these online sources need to be identifiable, via 

tags or online services. We however note that, due to the increased deployment of RFID tags and QR 

codes in daily life, this assumption is in line with current developments.  
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7.3.2 Mobile query service 

In this section, we elaborate on limitations with regards to the mobile query service. 

Query dataset consisting of small online sources: The goal of the mobile query service is to supply 

transparent query access to a currently untapped Semantic Web segment, comprising small online 

RDF sources (e.g., RDF files, semantically annotated websites). Because of this reason, including large 

online semantic datasets (e.g., LinkedGeoData, DBPedia) during querying has not been considered. 

Other Semantic Web issues: The mobile query service supplies configurable features to support the 

Semantic Web’s Open World Assumption. However, other problems arise as well when exploring 

data in the Semantic Web. In Linked Data, an important guideline is to re-use the same URI for 

identical resources, so they can be identified across different online sources. Furthermore, well-

known domain-specific ontologies should be utilized to describe RDF resources. However, in practice, 

content authors usually introduce new URIs to describe existing resources, and create new 

ontologies to annotate the RDF resources. Therefore, mechanisms should be in place to identify 

identical RDF resources and align different ontologies describing the same domain. Resolving these 

issues is beyond the scope of this dissertation. Currently, it is the responsibility of the application 

developer to resolve these issues manually in the posed queries (e.g., indicate alternative resource 

URIs and ontology terms in UNION or FILTER clauses). 

Limitations of the experimental validation: During the experimental validation, we evaluated the 

presented Least-Popular-Sources (LPS) removal strategy. As a main goal, these experiments 

investigated the usefulness of LPS in keeping the number of cache misses and resulting source re-

downloads in check for the Meta Cache component. In order to evaluate the performance of LPS, 

Least-Recently-Used (LRU) was utilized as a reference strategy. In this vein, the goal of the 

experiments was not to extensively evaluate existing removal strategies, for instance including LRU, 

Least-Frequently-Used (LFU) or Furthest-Away-Removal (FAR). The suitability of such cache removal 

strategies depends on the locality of reference, exhibited by the particular experiment queries. For 

instance, in case a temporal locality is exhibited, LRU and LFU will perform well; in case cached data 

in the user’s vicinity and walking direction is often required, FAR will be more suitable. Therefore, to 

evaluate such strategies, a large and representative set of queries should be extracted from different 

types of real-world applications, and used in the experiments. However, comprehensively comparing 

the LPS strategy to the range of currently existing strategies, utilizing such a large amount of queries 

from existing mobile applications, is not in the scope of this dissertation. 

7.4 Publications 
This section lists articles publishing the work presented in this dissertation, respectively concerning 

the SCOUT context-provisioning framework (section 7.4.1.1), the mobile query service (section 

7.4.1.2) and applications using SCOUT (section 7.4.1.3). 
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7.4.1.1 SCOUT context-provisioning framework 

Below, we list publications pertaining to the SCOUT framework. 

1) Publication: Van Woensel, W., Casteleyn, S., De Troyer, O.: "A Framework for Decentralized, 

Context-Aware Mobile Applications Using Semantic Web technology", Proceedings of On the 

Move to Meaningful Internet Systems: OTM 2009 Workshops, Confederated International 

Workshops and Posters, LNCS 5872, pp. 88-97, Eds. Robert Meersman, Pilar Herrero, Tharam S. 

Dillon, Publ. Springer Verlag, ISBN 978-3-642-05289-7, Vilamoura, Portugal (2009) 

Summary: This article detailed the layered architecture of the SCOUT context-provisioning 

framework. 

2) Publication: Van Woensel, W., Casteleyn, S., De Troyer, O.: "SCOUT: A Framework for 

Personalized Context-Aware Mobile Applications. ", Proceedings of the ICWE 2009 Doctoral 

Consortium, Eds. Gustavo Rossi, Publ. CEUR Workshop Proceedings, online http://ceur-

ws.org/Vol-484, ISBN 1613-0073, San Sebastian, Spain (2009) 

Summary: This doctoral consortium article presented a short summary of the SCOUT 

architecture, and discussed the current status and challenges. 

7.4.1.2 Mobile query service 

In this section, we list publications concerning the mobile query service. 

1) Publication: Van Woensel, W., Casteleyn, S., Paret, E., De Troyer, O.: "Mobile Querying of Online 

Semantic Web Data for Context-Aware Applications", IEEE Internet Computing Special Issue 

(Semantics in Location-Based Services), Vol. 15, N° 6, pp. 32-39, Eds. Sergio Ilarri, Arantza 

Illarramendi, Eduardo Mena, Amit Sheth, ISBN-ISSN: 1089-7801 (2011) 

Summary: This article presented a newer version of the SCOUT framework architecture, and 

introduced an initial version of the mobile query service supporting source metadata indexing 

(featuring type inferencing at the query side). 

2) Publication: Van Woensel, W., Casteleyn, S., Paret, E., De Troyer, O.: "Transparent Mobile 

Querying of online RDF sources using Semantic Indexing and Caching", Proceedings of the 12th 

International Conference on Web Information System Engineering (WISE 2011), pp. 185-198, Eds. 

Athman Bouguettaya, Manfred Hauswirth, Ling Liu, Sydney, Australia (2011). 

Summary: This article further elaborated on the mobile query service, introducing the Meta 

Cache and detailing the Source Index Model. 

This paper received the best paper award. 

3) Publication: Paret, E., Van Woensel, W., Casteleyn, S., Signer, B. and De Troyer, O.: "Efficient 

Querying of Distributed RDF Sources in Mobile Settings based on a Source Index Model", 
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Proceedings of the 8th International Conference on Mobile Web Information Systems (MobiWIS 

2011), pp. 554-561, Eds. Elhandi Shakshuki, Muhammad Younas, Niagara Falls, Canada (2011) 

Summary: This article discussed the Source Index Model of the mobile query service in detail. 

This paper received the best paper award. 

4) Publication: Paret, E., Van Woensel, W., Casteleyn S., Signer, B. and De Troyer, O.: "Efficient 

Mobile Querying of Distributed RDF Sources", Proceedings of the 8th Extended Semantic Web 

Conference (ESWC 2011) (Poster), Heraklion Greece (2011) 

Summary: This poster introduced the Source Index Model of the mobile query service. 

7.4.1.3 Applications using SCOUT 

This section lists publications concerning the proof-of-concept mobile applications built on top of 

SCOUT. 

1) Publication: Adapting the obtrusiveness of service interactions in dynamically discovered 

environments", Proceedings of the 9th International Conference on Mobile and Ubiquitous 

Systems: Computing, Networking and Services (Mobiquitous 2012), pp. 250 - 262, Beijing, China 

(2012) 

Summary: In this article, we discussed how the AdaptIO system was extended to deal with a 

priori unknown, dynamically discovered environments. 

2) Publication: Van Woensel, W., Casteleyn, S., De Troyer, O.: "A Generic Approach for On-The-Fly 

Adding of Context-aware Features to Existing Websites", Proceedings of the 22nd ACM 

Conference on Hypertext and Hypermedia (HT'11), pp. 143-152, Eds. Paul De Bra, Kaj Grønbæk, 

ACM 2011, ISBN-ISSN 978-1-4503-0256-2, Eindhoven, Netherlands (2011). 

Summary: This article published an elaborated, generic and conceptual framework for the COIN 

approach. 

3) Publication: Casteleyn, S., Van Woensel, W., De Troyer, O.: "Assisting Mobile Web Users: Client-

Side Injection of Context-Sensitive Cues into Websites", Proceedings of the 12th International 

Conference on Information Integration and Web-based Applications & Services (iiWAS2010), pp. 

441-448, ISBN 978-1-4503-0421-4, Paris, France (2010) 

Summary: In this article, we introduced the initial COIN approach, together with a prototype 

implementation. 

4) Publication: Van Woensel, W., Casteleyn, S., De Troyer, O.: "Applying Semantic Web Technology 

in a Mobile Setting: The Person Matcher", Proceedings of the 10th International Conference of 

Web Engineering (ICWE 2010) (Demo), pp. 507-510, Eds. Benatallah et al., Publ. LNCS 6189, 

Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-13910-9, Vienna, Austria (2010) 
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Summary: This demo article detailed the Person Matcher application. 

7.5 Future work 
The research presented in this dissertation allows multiple opportunities for future work, some of 

which are related to the limitations discussed in the previous section. These opportunities range 

from extensions and improvements to the SCOUT framework and mobile query service, to more 

elaborate future work, where we extend our work into other research domains. In addition, we 

mention future work for the mobile approaches utilizing the SCOUT framework. 

7.5.1 SCOUT framework 

In this section, we discuss future work regarding the mobile SCOUT framework. 

In the SCOUT architecture, the Spatial Layer is responsible for supplying and maintaining high-level 

spatial information. The layer is centered on a spatial index, which stores the spatial shapes of 

detected physical entities and the user. The spatial index is populated based on detection and 

location information from the Detection Layer, and is utilized to determine nearness and 

containment between physical entities. Multiple improvements and extensions can be envisioned for 

this layer, as we discuss below. 

Indicate degree of uncertainty: Depending on the detection information supplied by the employed 

detection techniques, it is possible the locations of detected physical entities need to be 

approximated. For instance, in case only the detected range is known (e.g., in case of RFID), the 

detected entity can only be assumed to be located on the edge of a circle, with as radius the 

detected range. Depending on these approximations, the inferred spatial relations between entities 

will have a certain level of certainty. By explicitly indicating this degree of certainty, mobile 

applications may obtain more accurate knowledge on the user’s surroundings.  

Multiple spatial shapes per entity: Each physical entity has an associated spatial shape in the spatial 

index. However, some physical entities can include multiple spatial shapes; for instance, an institute 

spanning multiple buildings.  

Location-based garbage-collection of spatial index: It is clear that the spatial index will collect a large 

amount of entries after a while. To avoid the spatial index getting too large, spatial shapes related to 

entities currently not in the user’s vicinity could be stored persistently or removed.  

The SCOUT Environment Layer provides mobile applications with an abstract, integrated view of the 

user and their environment, called the Environment Model. The implementation underlying the 

Environment Model can be extended in multiple ways, as we discuss below. 

Location-based data source retrieval: An essential part of the Environment Model consists of the 

online semantic dataset describing the user’s current environment. Currently, the SCOUT framework 

utilizes the mobile query service, presented in this dissertation, to gain transparent query access to 
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this online dataset. This general-purpose query service does not make any assumptions on which 

kind of queries are being fired, and can thus be re-used across different settings (e.g., by 

recommender systems [85]). However, in a context-aware setting, mobile applications typically 

require information on nearby physical entities. Consequently, another option is to continuously and 

pro-actively retrieve detected online sources associated with currently nearby physical entities. 

These dynamically collected, location-related sources are then utilized as query dataset. Similar pro-

active approaches are discussed in [12, 62]. For instance, this location-related dataset can be used in 

combination with the existing query service; whereby the query service retrieves non location-

specific data when referenced.  

External (P2P) access to the Environment Model: Currently, applications running on the mobile device 

can query the Environment Model to obtain knowledge on any piece of the user’s current 

environment. However, external applications (i.e., not deployed on the user’s device) could also 

benefit from the data in this model. For instance, a social networking site can track the route and 

visited places of a tourist, and share this information with family and friends. Moreover, a particular 

instance of SCOUT (i.e., running on a certain user’s device) could benefit from the knowledge 

captured in the Environment Models of other users; e.g., to recommend or share certain places or 

routes through the city, or to obtain data on an environment the user has not yet visited (e.g., other 

part of the city). In order to support external applications (e.g., online websites) in accessing the 

Environment Model, the model could for instance be replicated on a WWW server, thus relieving the 

mobile device from serving all of the information requests. Furthermore, P2P communication 

between different SCOUT instances could occur opportunistically, for instance to obtain information 

on the current environment from devices with more sensing capabilities. In either case, it is clear that 

solid privacy policies need to be put in place. This extension would take place into the domain of P2P 

communication and security / privacy. 

Support efficient services communication: SCOUT already has limited support for interacting with 

mobile environment services (as described in Chapter 6). Mobile applications can register a service 

discovery query with the Environment Notification Service, to be alerted when specific services 

become nearby. Via the Service Invoker component, mobile applications can then interact with 

discovered services, for instance to enable actuators (e.g., switch on light) or obtain dynamic sensor 

readings (e.g., light intensity). This means the main communication work is delegated towards the 

mobile application. Ideally, mobile applications should be able to query the Environment Model to 

retrieve any piece of information on the user’s environment, including dynamic sensor data. Behind 

the scenes, such queries could be analyzed, enabling SCOUT to contact related services and retrieve 

the dynamic information on-the-fly. Based on data transiency, some of the data could potentially 

also be cached. This extension of the SCOUT framework would involve working in the domain of 

services communication. 

Real-world validation of SCOUT: Several mobile systems rely on SCOUT to realize their functionality, 

each with their own contributions in their respective domains (see section 7.2). While these systems 
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can be seen as proof-of-concepts regarding the supplied functionality of SCOUT, the mobile 

applications were not tested by actual users in real-world settings (e.g., when walking around). 

Before SCOUT can be deployed in the real world, it should be validated by evaluating the real-world 

performance of these applications. This involves setting up extensive user experiments. 

7.5.2 Mobile query service 

This section discusses future work concerning the mobile query service. 

Estimate memory usage at runtime: Currently, we make a rough estimation of the cached payload, 

since the Android platform does not supply tools to efficiently and accurately measure object 

memory usage at runtime (such as e.g., the Java Instrumentation API). This estimated size considers 

the concrete payload, such as character arrays and integers, but not object overheads. More 

advanced heuristics could be employed to accurately and efficiently measure the entire cached 

payload. This work would not be specific to the mobile query service, but re-usable by other data-

intensive Android applications as well. 

Persistent swapping of core indices: As observed in the experiments, encountering a very large 

amount of sources could lead to the Source Index Model (SIM) or Meta Cache exceeding the 

available memory. Regarding the cache, this problem could be partially resolved by having a more 

accurate memory estimate at runtime, so the kept in-memory payload does not exceed the specified 

memory limit (see above, Estimate memory usage at runtime). At any rate however, the internal 

indices of either component would eventually lead to out-of-memory errors. To resolve this problem, 

parts of the SIM and Meta Cache indices could be swapped to persistent storage or removed entirely. 

Determining which parts should be stored or removed could be done via an existing removal 

strategy, depending on the observed locality of reference. For instance, in case often referenced 

metadata is likely to be referenced again, LFU can be utilized. It can be noted that our current 

implementation already contains a multi-level index solution, where parts can be swapped to 

persistent storage or removed. This implementation is currently used to index resource information 

during the type mediation process. However, before this solution can be re-used for the core indices 

of the main query service components, a major effort needs to be undertaken to optimize the 

implementation (see below, Efficient multi-level index implementation).  

Efficient multi-level index implementation: Our implementation includes a persistent multi-level 

index solution, where parts are automatically swapped to persistent storage or removed. Currently, 

this solution is being utilized to index resource information during the type mediation process. In 

addition, this multi-level index could be used to improve the memory efficiency of the core indices of 

the core query service components (see above, Persistent swapping of core indices). However, as 

shown in our experiments, the persistent multi-level index yields a significant performance overhead. 

Therefore, future work involves optimizing the multi-level index implementation. 

Optimize type inferencing: As shown in our experimental validation, type inferencing yields an 

exceedingly large performance overhead, both during source processing and query resolution. In 
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particular, during the query phase, type inferencing needs to be re-applied to previously processed 

sources, since online sources cannot be updated with the types already inferred during source 

processing. In order to avoid this query-time overhead, inferred types can be stored locally after 

source processing, ruling out the necessity for type inferencing during query resolution (i.e., trading 

performance for extra storage). However, the fact remains that applying type inferencing in general 

incurs a huge overhead. In order to make type inferencing feasible in our mobile query service, either 

a more advanced type inferencing component needs to be devised or plugged in; or more powerful 

mobile devices need to be employed.  

More efficient cache maintenance: Our experimental validation also showed that source-based 

removal strategies (such as LPS) incur large cache maintenance costs, due to the course-graininess of 

the cache units. It should be investigated in detail how such maintenance, which involve moving 

large amounts of cached data to persistent storage or removing persistent data, can be optimized. 

Automatic configuration of LPS factors: In our experimental validation, we manually chose a factor 

weighting for the Least-Popular-Sources (LPS) removal strategy that resulted in the best performance 

for our specific dataset and experiment queries. However, the optimal factor weighting is likely 

determined by the particular composition of the online semantic dataset. This is suggested by 

differences between our current experimental validation and previous experiments [86]. In these 

previous experiments, a partially synthetic dataset was employed, with fewer metadata 

combinations that were more evenly spread across the data. As a result, larger numbers of source re-

downloads per cache miss were incurred, since the missing metadata combinations typically 

occurred in many more online sources. In order to deal with different dataset compositions, a 

mechanism should be developed to infer optimal factor configurations. 

Applying query distribution to integrate large datasets: The mobile query service aims to provide 

transparent, integrated mobile query access to a currently untapped part of the Semantic Web, 

consisting of small online RDF sources. However, knowledge contained in large online datasets 

(accessible via online query endpoints, e.g., LinkedGeoData, DBPedia) could also be very useful to 

mobile applications, for instance to enrich information retrieved from small online RDF sources. To 

realize a fully integrated query access, mobile applications currently need to query these online 

datasets separately, and then manually integrate the retrieved data with the query results from our 

mobile query service. In the query distribution domain, various approaches [67, 68] already exist to 

efficiently distribute the execution of a query across online query endpoints. An interesting research 

effort would consist of aligning query distribution with the mobile query service. This work would 

take place in the domain of query distribution. 

Data exploration issues: Multiple issues occur when exploring data across different Semantic Web 

sources. Firstly, an important Linked Data guideline is to re-use the same URI for identical resources, 

so they can be identified across different sources. However, RDF content authors usually do not 

check other sources for existing URIs that already identify the resources in question. This fact is 

reflected by the sets of interlinks made available between major online datasets (e.g., DBPedia, 
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LinkedGeoData), i.e., by statements specifying equivalence between different resource URIs via the 

owl:sameAs property. Secondly, well-known, domain-specific ontologies should be utilized to 

describe RDF resources, in order to facilitate data integration and query authoring. In practice 

however, semantic sources often use different domain-specific ontologies, or employ their own 

custom ontology. Furthermore, different schemas and conventions are often utilized to represent 

the same content data. For instance, the WGS84 [81] and geoFeatures131 ontologies both describe 

geographical data, defining different schema terms to represent the same concepts and rely on 

different conventions to represent geographical coordinates.  

The mobile query service already supports data exploration in the Semantic Web to an extent, by 

supplying configurable features to deal with the Semantic Web’s Open World Assumption. However, 

in order to provide fully robust exploration support, the mobile query service should also deal with 

the above mentioned issues. For instance, manually specified interlinks could be leveraged to deal 

with resource identification issues (although these are usually only available for large datasets that 

are part of the Linked Data cloud132), and existing ontology matching and alignment approaches to 

deal with heterogeneous ontologies. Furthermore, query-rewriting techniques could be applied, 

whereby queries are relaxed based on user preferences and domain knowledge [129]. For instance, 

regarding domain knowledge, subclass/subproperty relations as well as thesauri for retrieving word 

synonyms can be leveraged to replace query terms by more general (or alternative) terms, in order 

to ensure results will be returned. 

Considering other mobility-related issues Matters such as battery consumption and the impact of 

network delays have not yet been considered in the mobile query service. Future work could consist 

of dealing with such mobility-related issues.  

7.5.3 Applications using SCOUT 

In this section, we shortly mention future work regarding the mobile applications utilizing the SCOUT 

framework. 

7.5.3.1 The Person Matcher 

Leverage social networks: Currently, the Person Matcher requires each encountered person, as well 

as the user, to have their own FOAF profile. Future work could involve leveraging social network data 

on encountered persons (e.g., via the Facebook Graph API) to construct (or extend) the (FOAF) 

networks of connected people. 
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 http://www.mindswap.org/2004/geo/geoOntologies.shtml (access date: 08/03/2013) 
132

 http://linkeddata.org/ (access date: 04/06/2013) 

http://www.mindswap.org/2004/geo/geoOntologies.shtml
http://linkeddata.org/
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7.5.3.2 COIN 

Extra annotation languages: By providing support for other annotation languages (e.g., microdata133, 

which is currently pushed by major search providers) in the semantic information extraction step, the 

applicability of the COIN approach could be increased.  

Optimize semantics extraction step: Since the semantics extraction step is quite resource intensive on 

mobile devices, we aim to investigate methods of optimizing this step. For instance, this could be 

done by sharing extracted content semantics between clients.  

Mobile user interface: Current work-in-progress is the development of a mobile user interface, which 

allows end-users to easily specify matching strategies and configure adaptation techniques.  

Feedback mechanisms: In addition, we are currently developing feedback mechanisms for injected 

features, which would enable custom matching strategies to fine-tune their process logic according 

to user feedback. 

7.5.3.3 AdaptIO 

Fine-tune mobile user interface: The mobile interface should be fine-tuned based on the user 

feedback. Specifically, this involves improving the usability and learnability of the free-form option. 

More extensive user tests: More extensive user tests are still required to fully assess the usability of 

the interface, preferably with a focus on users without computer science backgrounds.  

End-user adaptation behavior specification: The largest remaining challenge is to empower end-users 

to specify the behavior of interaction adaptation, a task now reserved for the service designer. This 

way, the user could express custom adaptation behavior not initially foreseen by the designer. For 

instance, regarding the messaging service example (see Chapter 6, section 6.3.3.1), some people may 

prefer being made fully aware of any notifications when being in company of others; while others 

only want to be slightly-aware in case certain people are nearby (e.g., thesis promoter). 
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Appendix A  

SCOUT Ontologies 
A.1 Spatial Model ontology 
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

@prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#> . 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 

@prefix : <http://wise.vub.ac.be/namespaces/spatial-model#> . 

@prefix xml: <http://www.w3.org/XML/1998/namespace> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 

@prefix spatial-model: <http://wise.vub.ac.be/namespaces/spatial-model#> . 

@base <http://wise.vub.ac.be/namespaces/spatial-model> . 

 

<http://wise.vub.ac.be/namespaces/spatial-model> rdf:type owl:Ontology ; 

 rdfs:comment "This ontology is used by the Spatial Model in the SCOUT 

framework." . 

 

 

owl:sameAs rdf:type owl:AnnotationProperty . 

 

 

:contained rdf:type owl:ObjectProperty ; 

 rdfs:comment "This property states that the subject resource contained the 

object resource in the past." ; 

 owl:inverseOf :wasContainedIn . 

 

 

:containedIn rdf:type owl:ObjectProperty ; 

 rdfs:comment "This property states that the subject resource is currently 

contained in the object resource." . 

 

 

:contains rdf:type owl:ObjectProperty ; 



 

 rdfs:comment "This property states that the subject resource currently 

contains the object resource." ; 

 owl:inverseOf :containedIn . 

 

 

:isNearby rdf:type owl:ObjectProperty ; 

 rdfs:comment "This property states that the subject resource is currently 

nearby the object resource." . 

 

 

:lastKnownLocation rdf:type owl:ObjectProperty ; 

 rdfs:comment "The object resource of this property specifies the last known 

location of the subject resource. The absolute coordinates of the location resource 

can for instance be specified using the geoFeatures vocabulary (as is done 

currently in the SCOUT SpatialManager)." . 

 

 

:wasContainedIn rdf:type owl:ObjectProperty ; 

 rdfs:comment "This property states that the subject resource was contained in 

the object resource in the past." ; 

 rdfs:subPropertyOf owl:topObjectProperty . 

 

 

:wasNearby rdf:type owl:ObjectProperty ; 

 rdfs:comment "This property states that the subject resource was nearby the 

object resource in the past." . 

 

 

:from rdf:type owl:DatatypeProperty ; 

 rdfs:comment "This property states that the spatial relation (e.g., 

indicating nearness, containment) is / was valid from the specified timestamp 

onward. The subject of this property should be an rdf:Statement utilizing one of 

the spatial relation properties (e.g., isNearby, contains, ..)." . 

 

 

:until rdf:type owl:DatatypeProperty ; 

 rdfs:comment "This property states that the spatial relation (e.g., 

indicating nearness, containment) is / was valid up until the specified timestamp. 

The subject of this property should be an rdf:Statement utilizing one of the 

spatial relation properties (e.g., isNearby, contains, ..)." . 

 

 

owl:Thing rdf:type owl:Class . 

 

 

:currentlyNearby rdf:type owl:NamedIndividual , 

                          owl:Thing ; 

 owl:sameAs :isNearby . 

 

 

:isNearby rdf:type owl:NamedIndividual , 

                   owl:Thing ; 



 

 rdfs:comment "This property states that the subject resource is currently 

nearby the object resource." . 

A.2 Example Spatial Model instance 
<7b9e9850-4e26-4dfd-a0be-3c97e44fecec> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/healthcity.rdf> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#wasNearby> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675767319" ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#until> 

              "1337675770458" . 

 

<http://wilma.vub.ac.be/~wvwoense/metadata/healthcity.rdf> 

      <http://wise.vub.ac.be/namespaces/spatial-model#lastKnownLocation> 

              [ 

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#hasCoordinat

eSystem> 

                        

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#WGS1984> ; 

                

<http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#xyCoordinates> 

                        "50.824501037597656,4.394495487213135 

50.82426834106445,4.394777297973633 50.82423400878906,4.394863128662109 

50.824302673339844,4.395013332366943 50.82432556152344,4.3949875831604 

50.82451248168945,4.395369529724121 50.824771881103516,4.395047664642334 

50.824501037597656,4.394495487213135" 

              ] . 

 

<28e5a0e6-66b7-4571-b43c-75ff9e357249> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#contains> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/kk.rdf> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675770458" . 

 

<http://wilma.vub.ac.be/~wvwoense/metadata/denker_in_alle_staten.rdf> 

      <http://wise.vub.ac.be/namespaces/spatial-model#lastKnownLocation> 

              [ 

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#hasCoordinat

eSystem> 



 

                        

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#WGS1984> ; 

                

<http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#xyCoordinates> 

                        "50.82242202758789,4.393936634063721" 

              ] . 

 

<2b02c20d-6d4b-4f36-8116-59b27b621816> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#contained> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/atletiekpiste.rdf> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675765052" ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#until> 

              "1337675767319" . 

 

<d618aca0-0189-4766-a7d4-a1279ad841bb> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#wasNearby> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/denker_in_alle_staten.rdf> 

; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675759401" ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#until> 

              "1337675761151" . 

 

<a85f444f-d0aa-49e4-a030-b8ec5e9992c4> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#wasNearby> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/healthcity.rdf> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675767319" ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#until> 

              "1337675770458" . 

 

<http://wilma.vub.ac.be/~wvwoense/metadata/atletiekpiste.rdf> 

      <http://wise.vub.ac.be/namespaces/spatial-model#lastKnownLocation> 

              [ 

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#hasCoordinat

eSystem> 



 

                        

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#WGS1984> ; 

                

<http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#xyCoordinates> 

                        "50.822837829589844,4.393952369689941 

50.823795318603516,4.3938775062561035 50.82400894165039,4.3944220542907715 

50.82379913330078,4.394934177398682 50.822872161865234,4.394920825958252 

50.822696685791016,4.394435405731201 50.822837829589844,4.393952369689941" 

              ] . 

 

<ade96b4f-1c24-47c2-b68d-7a9193686947> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#wasNearby> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/student_restaurant.rdf> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675761151" ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#until> 

              "1337675765052" . 

 

<http://wise.vub.ac.be/members/william> 

      a       <http://wise.vub.ac.be/namespaces/user-model#User> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#lastKnownLocation> 

              [ 

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#hasCoordinat

eSystem> 

                        

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#WGS1984> ; 

                

<http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#xyCoordinates> 

                        "50.82326864795351,4.398212742613295 

50.823273144561526,4.398212742613295 50.82327314456066,4.398226978817168 

50.82326864795262,4.398226978817168" 

              ] . 

 

<6c48ca71-9f71-4b19-aa50-970350411d56> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/denker_in_alle_staten.rdf> 

; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#wasNearby> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675759401" ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#until> 

              "1337675761151" . 

 



 

<2f83241e-f836-4f80-a459-d8009db460cf> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/kk.rdf> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#containedIn> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675770458" . 

 

<f9b4f345-f07e-47ec-a79d-c83662cfe003> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/tcomplex.rdf> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#isNearby> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/healthcity.rdf> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675759401" . 

 

<873c08ae-1108-4eaf-991a-29dd103596b6> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/tcomplex.rdf> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#wasNearby> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675767319" ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#until> 

              "1337675770458" . 

 

<04b7d7ac-fbfc-422a-aabe-90bc931b73ca> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/atletiekpiste.rdf> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#wasContainedIn> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675765052" ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#until> 

              "1337675767319" . 

 

<http://wilma.vub.ac.be/~wvwoense/metadata/student_restaurant.rdf> 

      <http://wise.vub.ac.be/namespaces/spatial-model#lastKnownLocation> 



 

              [ 

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#hasCoordinat

eSystem> 

                        

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#WGS1984> ; 

                

<http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#xyCoordinates> 

                        "50.8216438293457,4.396157264709473 

50.82173156738281,4.3962082862854 50.82177734375,4.396084785461426 

50.82194137573242,4.396157264709473 50.8220100402832,4.395858287811279 

50.821903228759766,4.3957977294921875 50.821956634521484,4.395531177520752 

50.821800231933594,4.395445346832275 50.82182312011719,4.395264148712158 

50.82171630859375,4.395196914672852 50.821685791015625,4.395368576049805 

50.82173156738281,4.395409107208252 50.821624755859375,4.395921230316162 

50.82167053222656,4.395970821380615 50.8216438293457,4.396157264709473" 

              ] . 

 

<http://wilma.vub.ac.be/~wvwoense/metadata/kk.rdf> 

      <http://wise.vub.ac.be/namespaces/spatial-model#lastKnownLocation> 

              [ 

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#hasCoordinat

eSystem> 

                        

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#WGS1984> ; 

                

<http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#xyCoordinates> 

                        "50.8232307434082,4.398026943206787 

50.823360443115234,4.39824914932251 50.82332992553711,4.398293495178223 

50.82344436645508,4.398494720458984 50.82337188720703,4.3986005783081055 

50.82319259643555,4.398293495178223 50.82316970825195,4.398319244384766 

50.82310104370117,4.398210525512695 50.8232307434082,4.398026943206787" 

              ] . 

 

<c6586351-19b2-4b2a-9d84-153856d19dcc> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/healthcity.rdf> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#isNearby> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/tcomplex.rdf> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675759401" . 

 

<http://wilma.vub.ac.be/~wvwoense/metadata/tcomplex.rdf> 

      <http://wise.vub.ac.be/namespaces/spatial-model#lastKnownLocation> 

              [ 

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#hasCoordinat

eSystem> 

                        

<http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems20040307.owl#WGS1984> ; 



 

                

<http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#xyCoordinates> 

                        "50.82421112060547,4.395654201507568 

50.824249267578125,4.39560079574585 50.82422637939453,4.395543098449707 

50.82417297363281,4.395526885986328 50.82417297363281,4.395458698272705 

50.82430648803711,4.3954854011535645 50.824344635009766,4.395580768585205 

50.82439422607422,4.395513534545898 50.824462890625,4.395663738250732 

50.824310302734375,4.395848751068115 50.82421112060547,4.395654201507568" 

              ] . 

 

<464bb8f4-3abf-464b-8232-b5832802b7d4> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/student_restaurant.rdf> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#wasNearby> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675761151" ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#until> 

              "1337675765052" . 

 

<f55b2060-de64-4d01-9fdd-ff80f692202b> 

      a       <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> 

              <http://wise.vub.ac.be/members/william> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> 

              <http://wise.vub.ac.be/namespaces/spatial-model#wasNearby> ; 

      <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> 

              <http://wilma.vub.ac.be/~wvwoense/metadata/tcomplex.rdf> ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#from> 

              "1337675767319" ; 

      <http://wise.vub.ac.be/namespaces/spatial-model#until> 

              "1337675770458" . 

A.3 User Model ontology 
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

@prefix restaurant: <http://gaia.fdi.ucm.es/ontologies/restaurant.owl#> . 

@prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#> . 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 

@prefix : <http://wise.vub.ac.be/namespaces/user-model#> . 

@prefix xml: <http://www.w3.org/XML/1998/namespace> . 

@prefix space: <http://frot.org/space/0.1/> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 

@base <http://wise.vub.ac.be/namespaces/user-model> . 

 

<http://wise.vub.ac.be/namespaces/user-model> rdf:type owl:Ontology ; 

 rdfs:comment "This ontology contains some user model properties, and defines 

the User class that is used in the SCOUT user and spatial model. Note that 



 

properties from well-known ontologies such as FOAF, vCard, .. should be preferred 

over these properties, should they be available." . 

 

 

:prefersCuisine rdf:type owl:ObjectProperty ; 

      rdfs:comment "This property states that the user prefers this cuisine." ;                 

      rdfs:range restaurant:Cuisine ; 

 rdfs:domain :User . 

 

 

:stayingAt rdf:type owl:ObjectProperty ; 

 rdfs:comment "This property states that the user is currently staying at this 

hotel." ;       

 rdfs:range space:Hotel ;       

 rdfs:domain :User . 

 

 

:allowance rdf:type owl:DatatypeProperty ; 

 rdfs:comment "The amount of money the user is willing or able to pay." ; 

 rdfs:domain :User . 

 

 

space:Hotel rdf:type owl:Class ; 

 rdfs:comment "A hotel." . 

 

 

restaurant:Cuisine rdf:type owl:Class ; 

 rdfs:comment "A cuisine (e.g., Italian, Chinese, ..)" . 

 

 

:User rdf:type owl:Class ; 

 rdfs:comment "A resource of this type represents the user about whom the user 

model stores information. In SCOUT, this type is required to denote the user 

resource in the user and spatial model." . 

A.4 Example User Model instance 
@prefix rdfs:    <http://www.w3.org/2000/01/rdf-schema#> . 

@prefix project:  <http://ebiquity.umbc.edu/ontology/project.owl#> . 

@prefix person:  <http://ebiquity.umbc.edu/ontology/person.owl#> . 

@prefix milo:    <http://reliant.teknowledge.com/DAML/Mid-level-ontology.owl#> . 

@prefix foaf:    <http://xmlns.com/foaf/0.1/> . 

@prefix rdf:     <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix um:      <http://wise.vub.ac.be/namespaces/user-model#> . 

@prefix resto:   <http://gaia.fdi.ucm.es/ontologies/restaurant.owl#> . 

@prefix space:   <http://frot.org/space/0.1/> . 

@prefix research:  <http://ebiquity.umbc.edu/ontology/research.owl#> . 

@prefix publication:  <http://ebiquity.umbc.edu/ontology/publication.owl#> . 

 

<http://wise.vub.ac.be/members/william/foaf_william.rdf> 

      a       foaf:PersonalProfileDocument ; 

      foaf:maker <http://wise.vub.ac.be/members/william> ; 

      foaf:primaryTopic <http://wise.vub.ac.be/members/william> . 

 

<http://wise.vub.ac.be/members/william> 

      a       foaf:Person , um:User ; 



 

      um:prefersCuisine resto:MexicanTexMexCuisine ; 

      um:stayingAt <http://www.queeneindhoven.nl/> ; 

      foaf:family_name "Van Woensel" ; 

      foaf:givenname "William" ; 

      foaf:homepage <http://wise.vub.ac.be/members/william> ; 

      foaf:interest <http://en.wikipedia.org/wiki/Mobile_computing> , 

<http://semanticweb.org> , milo:Guitar ; 

      foaf:knows <http://wise.vub.ac.be/members/bram> , 

<http://wise.vub.ac.be/members/beat> , <http://wise.vub.ac.be/members/sven> , 

<http://wise.vub.ac.be/members/olga> ; 

      foaf:mbox_sha1sum "5a88cf44b22fec69f5ce52745a5f10777fb70373" ; 

      foaf:name "William Van Woensel" ; 

      foaf:nick "darth_willy" ; 

      foaf:schoolHomepage <http://www.vub.ac.be> ; 

      foaf:title "Mr" ; 

      foaf:workInfoHomepage 

              <http://wise.vub.ac.be/members/william> ; 

      foaf:workplaceHomepage 

              <http://wise.vub.ac.be> . 

 

resto:MexicanTexMexCuisine 

      a       resto:Cuisine . 

 

<http://www.queeneindhoven.nl/> 

      a       space:Hotel . 

 

<http://semanticweb.org> 

      a       foaf:Document ; 

      foaf:topic <http://www.w3.org/RDF/> , <http://www.w3.org/TR/rdf-sparql-

query/> , <http://www.w3.org/TR/owl-features/> , research:SemanticWeb , 

<http://www.w3.org/2001/sw/> . 

 

<http://wise.vub.ac.be/members/sven> 

      a       foaf:Person ; 

      rdfs:seeAlso <http://wise.vub.ac.be/members/william/foaf_sven.rdf> . 

 

<http://wise.vub.ac.be/members/olga> 

      a       foaf:Person ; 

      rdfs:seeAlso <http://wise.vub.ac.be/members/william/foaf_olga.rdf> . 

 

<http://en.wikipedia.org/wiki/Mobile_computing> 

      a       foaf:Document ; 

      foaf:topic research:MobileComputing . 

 

<http://wise.vub.ac.be/members/bram> 

      a       foaf:Person ; 

      rdfs:seeAlso <http://wise.vub.ac.be/members/william/foaf_bram.rdf> . 

 

<http://wise.vub.ac.be/members/beat> 

      a       foaf:Person . 



 

  



 

  



 

 

Appendix B  

Mobile applications 
B.1 Experimental validation 

B.1.1 Queries 

The first query returns all shopping centres together with their names, absolute coordinates, town 

and (optionally) photos: 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX wgs: <http://www.w3.org/2003/01/geo/wgs84_pos#> 

PREFIX fb: <http://rdf.freebase.com/ns/> 

PREFIX dbp: <http://dbpedia.org/property/> 

PREFIX dbo: <http://dbpedia.org/ontology/> 

SELECT ?shoppingCentre ?name ?lat ?long ?town ?photos 

WHERE {  

  ?shoppingCentre rdf:type fb:location.location . 

  ?shoppingCentre rdfs:label ?name . 

 

  ?shoppingCentre wgs:lat ?lat ; 

    wgs:long ?long ; 

    fb:business.shopping_center.address ?address . 

  ?address fb:location.mailing_address.citytown ?town . 

 

  OPTIONAL {  

    ?shoppingCentre dbp:hasPhotoCollection ?photos . 

  } 

} 

 

The second query selects all persons and the groups they are member of, optionally with images 

depicting these persons and their online chat accounts: 



 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

SELECT ?person ?group ?img ?account 

WHERE { 

  ?group rdf:type foaf:Group . 

  ?group foaf:member ?person . 

  ?person rdf:type foaf:Person . 

 

  OPTIONAL { 

    ?img foaf:depicts ?person . 

  }  

  OPTIONAL { 

    ?person foaf:holdsAccount ?account . 

    ?account rdf:type foaf:OnlineChatAccount . 

  }  

} 

 

The third query returns all airports, together with their absolute coordinates: 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX geo: <http://www.geonames.org/ontology#>  

PREFIX sch: <http://schema.org/> 

PREFIX wgs: <http://www.w3.org/2003/01/geo/wgs84_pos#> 

SELECT DISTINCT ?airport ?lat ?long  

WHERE { 

  ?airport rdf:type sch:Airport . 

 

  ?airport wgs:geometry ?shape ; 

    wgs:lat ?lat ; 

    wgs:long ?long . 

} 

 

The fourth query finds all exhibitions, together with their names, start- and end-dates, venues, 

displayed pieces and their names: 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX am: <http://purl.org/collections/nl/am/> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

SELECT ?exhibition ?name ?from ?to ?venue ?piece ?pieceName 

WHERE { 

  ?exhibition rdf:type am:Exhibition . 

  ?exhibition rdfs:label ?name ; 

    am:exhibitionDateStart ?from ; 

    am:exhibitionDateEnd ?to ; 

    am:exhibitionVenue ?venue . 

 

  ?piece am:exhibition ?exhibition ; 

    am:title ?pieceName . 

} 

 



 

The fifth and final query selects products below 20 dollars, their price, manufacturer, name and 

comments: 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX gr: <http://purl.org/goodrelations/v1#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>  

SELECT ?offering ?price ?manufacturer ?name ?comment 

WHERE { 

  ?offering gr:hasPriceSpecification ?priceSpec ; 

    gr:includesObject ?object . 

 

  ?priceSpec gr:hasCurrency "USD" ; 

    gr:hasCurrencyValue ?price . 

  FILTER (xsd:double(?price) < 20) 

 

  ?object gr:typeOfGood ?goodType . 

  ?goodType gr:hasMakeAndModel ?model . 

  ?model rdf:type gr:ProductOrServiceModel . 

 

  ?model gr:hasManufacturer ?manufacturer . 

 

  ?model rdfs:label ?name ; 

    rdfs:comment ?comment . 

}; 

 



 

  



 

 

Appendix C  

Mobile applications 
C.1 Person Matcher 

C.1.1 Weighting schemes 

C.1.1.1 Friends scheme 

@prefix match: <http://wise.vub.ac.be/match#> .  

@prefix match_friend: <http://wise.vub.ac.be/match_friend#> .  

@prefix dcmi: <http://purl.org/dc/elements/1.1/> .  

@prefix foaf: <http://xmlns.com/foaf/0.1/> .  

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .  

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .  

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .  

@prefix xsd: <http://www.w3.org/2001/XMLSchema-datatypes#> .  

 

match_friend:FriendMatcher rdf:type match:WeightingScheme ; 

 rdfs:label "Friend Matcher" ; 

 dcmi:description "A weighting scheme for finding new friends" ; 

 

 match:hasMatchRelation [  

  a match:LinkMatchRelation ; 

   

  rdfs:label "knows" ; 

  dcmi:description "denotes rdf:type generic 'knows' relation" ; 

   

  match:weight "1.0"^^xsd:float ; 

   

  match:hasMatchProperty [  

   match:propID "knows" ; 

   match:property foaf:knows ; 

   match:isSymmetric "true"^^xsd:boolean  

  ]  



 

 ] ; 

 match:hasMatchRelation [  

  a match:LinkMatchRelation ; 

   

  rdfs:label "in group together with" ; 

  dcmi:description "match people who are in the same groups together" ; 

   

  match:weight "0.8"^^xsd:float ; 

   

  match:hasMatchPropertySequence [  

   match:hasMatchProperties [ 

    a rdf:Seq ; 

    rdf:li match_friend:member1 ; 

    rdf:li match_friend:member2 

   ]  

  ]   

 ] ; 

 match:hasMatchRelation [  

  a match:ValueMatchRelation ; 

  match:valueArity match:arityMany ;  

 

  rdfs:label "share interest topics with" ; 

  dcmi:description "match via topics of explicit user interests" ; 

 

  match:weight "0.9" ; 

 

  match:hasMatchPropertySequence [  

   match:hasMatchProperties [ 

    a rdf:Seq ; 

    rdf:li match_friend:interest ; 

    rdf:li match_friend:topic  

   ]  

  ]  

 ] . 

 

 

match_friend:interest rdf:type match:MatchProperty ; 

 match:propID "interest" ; 

 match:property foaf:interest ; 

 match:isSymmetric "false" . 

 

match_friend:topic rdf:type match:MatchProperty ; 

 match:propID "topic" ; 

 match:property foaf:topic ; 

 match:isSymmetric "false" . 

 

match_friend:made1 rdf:type match:MatchProperty ; 

 match:propID "made_thing" ; 

 match:property foaf:made ; 

 match:isSymmetric "false" ; 

 match:inverseProperty foaf:maker . 

 



 

match_friend:made2 rdf:type match:MatchProperty ; 

 match:propID "made_thing" ; 

 match:property foaf:maker ; 

 match:isSymmetric "false" ; 

 match:inverseProperty foaf:made . 

 

match_friend:member1 rdf:type match:MatchProperty ; 

 match:propID "member" ; 

 match:property foaf:member ; 

 match:isSymmetric "false" ; 

 

match_friend:member2 rdf:type match:MatchProperty ; 

 match:propID "member" ; 

 match:property foaf:member ; 

 match:isSymmetric "false" ; 

C.1.1.2 Colleagues scheme 

@prefix match: <http://wise.vub.ac.be/match#> .  

@prefix match_friend: <http://wise.vub.ac.be/match_friend#> .  

@prefix dcmi: <http://purl.org/dc/elements/1.1/> .  

@prefix foaf: <http://xmlns.com/foaf/0.1/> .  

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .  

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .  

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .  

@prefix xsd: <http://www.w3.org/2001/XMLSchema-datatypes#> .  

 

match_friend:ColleagueMatcher rdf:type match:WeightingScheme ; 

 rdfs:label "Colleague Matcher" ; 

 dcmi:description "A weighting scheme for finding new people to collaborate 

with" ; 

 

 match:hasMatchRelation [  

  a match:LinkMatchRelation ; 

   

  rdfs:label "knows" ; 

  dcmi:description "denotes rdf:type generic 'knows' relation" ; 

   

  match:weight "1.0"^^xsd:float ; 

   

  match:hasMatchProperty [  

   match:propID "knows" ; 

   match:property foaf:knows ; 

   match:isSymmetric "true"^^xsd:boolean  

  ]  

 ] ; 

 match:hasMatchRelation [  

  a match:LinkMatchRelation ; 

   

  rdfs:label "made document with" ; 

  dcmi:description "match people who have made documents together" ; 

   



 

  match:weight "0.8"^^xsd:float ; 

   

  match:hasMatchPropertySequence [  

   match:hasMatchProperties [ 

    a rdf:Seq ; 

    rdf:li match_friend:made1 ; 

    rdf:li match_friend:made2 

   ]  

  ]  

 ] ; 

 match:hasMatchRelation [  

  a match:LinkMatchRelation ; 

   

  rdfs:label "in group together with" ; 

  dcmi:description "match people who are in the same groups together" ; 

   

  match:weight "0.7"^^xsd:float ; 

   

  match:hasMatchPropertySequence [  

   match:hasMatchProperties [ 

    a rdf:Seq ; 

    rdf:li match_friend:member1 ; 

    rdf:li match_friend:member2 

   ]  

  ]   

 ] ; 

 match:hasMatchRelation [  

  a match:ValueMatchRelation ; 

  match:valueArity match:arityMany ;  

 

  rdfs:label "share interest topics with" ; 

  dcmi:description "match via topics of explicit user interests" ; 

 

  match:weight "0.7" ; 

 

  match:hasMatchPropertySequence [  

   match:hasMatchProperties [ 

    a rdf:Seq ; 

    rdf:li match_friend:interest ; 

    rdf:li match_friend:topic  

   ]  

  ]  

 ] . 

 

 

match_friend:interest rdf:type match:MatchProperty ; 

 match:propID "interest" ; 

 match:property foaf:interest ; 

 match:isSymmetric "false" . 

 

match_friend:topic rdf:type match:MatchProperty ; 

 match:propID "topic" ; 



 

 match:property foaf:topic ; 

 match:isSymmetric "false" . 

 

match_friend:made1 rdf:type match:MatchProperty ; 

 match:propID "made_thing" ; 

 match:property foaf:made ; 

 match:isSymmetric "false" ; 

 match:inverseProperty foaf:maker . 

 

match_friend:made2 rdf:type match:MatchProperty ; 

 match:propID "made_thing" ; 

 match:property foaf:maker ; 

 match:isSymmetric "false" ; 

 match:inverseProperty foaf:made . 

 

match_friend:member1 rdf:type match:MatchProperty ; 

 match:propID "member" ; 

 match:property foaf:member ; 

 match:isSymmetric "false" ; 

 

match_friend:member2 rdf:type match:MatchProperty ; 

 match:propID "member" ; 

 match:property foaf:member ; 

 match:isSymmetric "false" ; 

C.2 COIN 

C.2.1 Queries 

C.2.1.1 Page Model query 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX gr: <http://purl.org/goodrelations/v1#>  

PREFIX pm: <http://wise.vub.ac.be/namespaces/webscape/page_model#> 

SELECT ?page_product_id ?page_manufacturer ?page_element  

WHERE {  

  ?triple1 rdf:subject ?page_product ;  

     rdf:predicate gr:hasMPN ;  

     rdf:object ?page_product_id .  

 

  ?triple2 rdf:subject ?page_product ;  

     rdf:predicate gr:hasManufacturer ;  

     rdf:object ?page_manufacturer .  

 

  ?triple1 pm:relatedElement ?page_element .  

} 

C.2.1.2 Context query 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX um: <http://wise.vub.ac.be/namespaces/user-model#> 



 

PREFIX geo: <http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#> 

PREFIX region: <http://wise.vub.ac.be/region/>  

PREFIX gr: <http://purl.org/goodrelations/v1#> 

PREFIX sumo: <http://www.ontologyportal.org/SUMO.owl#> 

PREFIX sm: <http://wise.vub.ac.be/namespaces/spatial-model#> 

SELECT ?interest ?user_coords ?entity_coords ?shop_product_id 

WHERE {  

  ?user rdf:type um:User ;  

     um:manufacturerInterest ?interest ; 

     sm:lastKnownLocation ?user_pos . 

  ?user_pos geo:xyCoordinates ?user_coords . 

 

  ?stat rdf:subject ?user ; 

     rdf:predicate sm:isNearby ; 

     rdf:object ?entity . 

 

  ?entity rdf:type sumo:RetailShop ; 

     region:sells ?shop_product ; 

     sm:lastKnownLocation ?entity_pos . 

  ?entity_pos geo:xyCoordinates ?entity_coords . 

  ?shop_product gr:hasMPN ?shop_product_id . 

} 

C.3 AdaptIO 

C.3.1 Service discovery scenarios 

C.3.1.1 Tourism application 

A local tourism application enables remote tourism services to provide the user with information on 

good nearby hotel deals, and nearby points-of-interest. To discover these kinds of remote services, 

the application registers a discovery query with the Environment Notification Service, from the 

Environment Discovery and Management Layer. 

This query looks for nearby tourism services (msm:Service, es:TourismService), which provides an 

operation (msm:hasOperation) to get points-of-interest (es:GetPointsOfInterest) or hotel deals 

(es:getHotelDeals), and is currently nearby (sm:isNearby) the user (um:User). It further obtains the 

contact information for the service and its operations. 

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX msm: <http://cms-wg.sti2.org/ns/minimal-service-model#> 

PREFIX es: <http://wise.vub.ac.be/namespaces/environment-services#> 

PREFIX um: <http://wise.vub.ac.be/namespaces/user-model#> 

PREFIX sm: <http://wise.vub.ac.be/namespaces/spatial-model#> 

SELECT ?service ?operation ?operationType ?port ?targetNS ?address ?transport 

WHERE { 

  ?service a msm:Service ; 

    a es:TourismService ; 

    msm:hasOperation ?operation . 



 

  ?operation a ?operationType . 

  FILTER (sameTerm(?operationType, es:GetPointsOfInterest) || 

sameTerm(?operationType, es:getHotelDeals)) 

 

  ?user a um:User . 

  ?stat rdf:subject ?user ; 

    rdf:predicate sm:isNearby ; 

    rdf:object ?service . 

 

  // contact info 

  ?service msm:hasPort ?port ;  

    msm:hasTargetNamespace ?targetNS . 

 

  ?port msm:hasBindType ; 

    msm:hasLocation ?address ;  

    msm:hasTransport ?transport .  

} 

 

In case a relevant tourism service is encountered, the application is notified, which utilizes the 

Service Invoker for remote communication. Based on the received data from one of the operations, 

the application provides notifications, informing the user of good nearby deals and points-of-interest. 

C.3.1.2 Movie application 

A local movie application enables remote movie ticket services to notify the user, in case the movie 

theatre plays a movie on the user's "to-watch" list. To discover these kinds of services, the 

application registers a discovery query with the Environment Notification Service, from the 

Environment Discovery and Management layer. 

This query looks for movie ticket services (msm:Service, es:MovieTicketService), which provides an 

operation (msm:hasOperation) to obtain information on available movie tickets 

(es:getMovieTicketInformation), and is located inside (sm:containedIn) a movie theatre 

(sumo:MovieTheatre) that is currently nearby (sm:isNearby) the user (um:User).  

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX msm: <http://cms-wg.sti2.org/ns/minimal-service-model#> 

PREFIX es: <http://wise.vub.ac.be/namespaces/environment-services#> 

PREFIX sm: <http://wise.vub.ac.be/namespaces/spatial-model#> 

PREFIX um: <http://wise.vub.ac.be/namespaces/user-model#> 

SELECT ?service ?operation ?port ?targetNS ?address ?transport 

WHERE { 

  ?service a msm:Service ; 

    a es:MovieTicketService ; 

    msm:hasOperation ?operation . 

  ?operation a es:GetMovieTicketInformation . 

 

  ?stat rdf:subject ?service ; 

    rdf:predicate sm:containedIn ; 

    rdf:object ?movieTheatre . 



 

  ?movieTheatre a sumo:MovieTheatre . 

 

  ?user a um:User . 

  ?stat rdf:subject ?user ; 

    rdf:predicate sm:isNearby ; 

    rdf:object ?movieTheatre . 

 

  // contact info 

  ?service msm:hasPort ?port ;  

    msm:hasTargetNamespace ?targetNS . 

 

  ?port msm:hasBindType ; 

    msm:hasLocation ?address ;  

    msm:hasTransport ?transport .  

} 

 

In case a relevant ticket service is encountered, the application is notified. The application utilizes the 

Service Invoker to communicate remotely with the service. Based on the response received from the 

es:GetMovieTicketInformation operation, the application determines whether the service sells 

tickets for movies "to watch". If so, the application notifies the user, informing him of the movie and 

the movie theatre, and potentially passing on the service's link to the webpage where the movie 

ticket can be purchased. 

C.3.2 Knowledge models 

C.3.2.1 Obtrusiveness model 

<?xml version="1.0" encoding="UTF-8"?> 

<obtrusivenessmodel:ConsiderateSystem xmi:version="2.0" 

xmlns:xmi="http://www.omg.org/XMI" 

xmlns:obtrusivenessmodel="http://pros.upv.es.ObtrusivenessSpace/" id=""> 

  <containerOfObtrusivenessSpaces> 

    <obtrusivenessSpace name=""> 

      <initiativeLevels name="Proactive" 

obtrusivenessLevels="//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@atten

tionLevels.0/@obtrusivenessLevels.0 

//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@attentionLevels.1/@obtrusi

venessLevels.0 

//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@attentionLevels.2/@obtrusi

venessLevels.0"/> 

      <attentionLevels name="Invisible"> 

        <obtrusivenessLevels name="Invisible-Proactive" 

initiativeLevel="//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@initiativ

eLevels.0"> 

          <obtrusivenessLevelServices name="messaging-insivible" 

obtrusivenessServiceService="//@services.0"> 

            <transitions name="!@meeting" 

targetService="//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@attentionLe

vels.1/@obtrusivenessLevels.0/@obtrusivenessLevelServices.0"/> 



 

            <configurationModel href="InteractionFeatures-

InvisibleProactive.cm4spl#/"/> 

          </obtrusivenessLevelServices> 

        </obtrusivenessLevels> 

      </attentionLevels> 

      <attentionLevels name="Slightly-appreciable"> 

        <obtrusivenessLevels name="Slightly-Proactive" 

initiativeLevel="//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@initiativ

eLevels.0"> 

          <obtrusivenessLevelServices name="messaging-slightly" 

obtrusivenessServiceService="//@services.0"> 

            <transitions name="@meeting" 

targetService="//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@attentionLe

vels.0/@obtrusivenessLevels.0/@obtrusivenessLevelServices.0"/> 

            <transitions name="@free-time" 

targetService="//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@attentionLe

vels.2/@obtrusivenessLevels.0/@obtrusivenessLevelServices.0"/> 

            <configurationModel href="InteractionFeatures-

SlightlyProactiveDefault.cm4spl#/"/> 

          </obtrusivenessLevelServices> 

        </obtrusivenessLevels> 

      </attentionLevels> 

      <attentionLevels name="User-awareness"> 

        <obtrusivenessLevels name="Aware-Proactive" 

initiativeLevel="//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@initiativ

eLevels.0"> 

          <obtrusivenessLevelServices name="messaging-aware" 

obtrusivenessServiceService="//@services.0"> 

            <transitions name="@work" 

targetService="//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@attentionLe

vels.1/@obtrusivenessLevels.0/@obtrusivenessLevelServices.0"/> 

            <transitions name="@with-company" 

targetService="//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace/@attentionLe

vels.1/@obtrusivenessLevels.0/@obtrusivenessLevelServices.0"/> 

            <configurationModel href="InteractionFeatures-

AwareProactive.cm4spl#/"/> 

          </obtrusivenessLevelServices> 

        </obtrusivenessLevels> 

      </attentionLevels> 

    </obtrusivenessSpace> 

  </containerOfObtrusivenessSpaces> 

  <services name="Messaging" 

obtrusivenessSpacesService="//@containerOfObtrusivenessSpaces.0/@obtrusivenessSpace

"/> 

  <featureModel href="InteractionFeatures.fm4spl#/"/> 

</obtrusivenessmodel:ConsiderateSystem> 

C.3.2.2 Interaction model – invisible 

<?xml version="1.0" encoding="UTF-8"?> 

<ConfigurationModelPackage:ConfigurationModel xmi:version="2.0" 

xmlns:xmi="http://www.omg.org/XMI" 



 

xmlns:ConfigurationModelPackage="http://es.gvcase.ConfigurationModelPackage/" 

name="InvisibleProactive_Configuration"> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.0"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.2"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.3"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.4"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.5"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.6"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.7"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.8"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.13"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.10"/> 

  </FeatureStates> 



 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.1"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.9"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.14"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.15"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.16"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.11"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.12"/> 

  </FeatureStates> 

  <featureModel 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#/"/> 

</ConfigurationModelPackage:ConfigurationModel> 

C.3.2.3 Interaction model – slightly-appreciable 

<?xml version="1.0" encoding="UTF-8"?> 

<ConfigurationModelPackage:ConfigurationModel xmi:version="2.0" 

xmlns:xmi="http://www.omg.org/XMI" 

xmlns:ConfigurationModelPackage="http://es.gvcase.ConfigurationModelPackage/" 

name="SlightlyProactiveDefault_Configuration"> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.0"/> 

  </FeatureStates> 



 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.2"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.3"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.4"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.5"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.6"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.7"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.8"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.13"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.10"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.1"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 



 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.9"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.14"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.15"/> 

  </FeatureStates> 

  <FeatureStates state="DEACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.16"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.11"/> 

  </FeatureStates> 

  <FeatureStates state="ACTIVE"> 

    <Feature 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#//@Features.12"/> 

  </FeatureStates> 

  <featureModel 

href="file:/Users/migipas/Desktop/eclipseModeling/Eclipse.app/Contents/MacOS/runtim

eObtrusiveness/CaseStudyModels/InteractionFeatures.fm4spl#/"/> 

</ConfigurationModelPackage:ConfigurationModel> 

C.3.2.4 Interaction resources model 

<?xml version="1.0" encoding="UTF-8"?> 

<FeatureModelPackage:FeatureModel xmi:version="2.0" 

xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:FeatureModelPackage="http://es.gvcase.featuremodelpackage" 

Name="InteractionFeatures"> 

  <Features Name="InteractionModalities"> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Optional" 

UpperBound="1" To="//@Features.3" From="//@Features.0"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Optional" 

UpperBound="1" To="//@Features.2" From="//@Features.0"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Optional" 

UpperBound="1" To="//@Features.1" From="//@Features.0"/> 

  </Features> 

  <Features Name="Visual"> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Optional" 

UpperBound="1" To="//@Features.9" From="//@Features.1"/> 



 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Mandatory" 

LowerBound="1" UpperBound="1" To="//@Features.10" From="//@Features.1"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:OR" 

LowerBound="1" UpperBound="-1"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Regular" 

UpperBound="1" To="//@Features.12" 

From="//@Features.1/@CardinalityBased_Relationships.2"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Regular" 

UpperBound="1" To="//@Features.11" 

From="//@Features.1/@CardinalityBased_Relationships.2"/> 

  </Features> 

  <Features Name="Auditory"> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Alternative" 

LowerBound="1" UpperBound="1"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Regular" 

UpperBound="1" To="//@Features.5" 

From="//@Features.2/@CardinalityBased_Relationships.0"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Regular" 

UpperBound="1" To="//@Features.6" 

From="//@Features.2/@CardinalityBased_Relationships.0"/> 

  </Features> 

  <Features Name="Haptic"> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Mandatory" 

LowerBound="1" UpperBound="1" To="//@Features.4" From="//@Features.3"/> 

  </Features> 

  <Features Name="Vibration"/> 

  <Features Name="Sound"> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Alternative" 

LowerBound="1" UpperBound="1"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Regular" 

UpperBound="1" To="//@Features.7" 

From="//@Features.5/@CardinalityBased_Relationships.0"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Regular" 

UpperBound="1" To="//@Features.8" 

From="//@Features.5/@CardinalityBased_Relationships.0"/> 

  </Features> 

  <Features Name="Speech"/> 

  <Features Name="Soft"/> 

  <Features Name="Loud"/> 

  <Features Name="Lights"/> 

  <Features Name="Property"> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Alternative" 

LowerBound="1" UpperBound="1"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Regular" 

UpperBound="1" To="//@Features.16" 

From="//@Features.10/@CardinalityBased_Relationships.0"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Regular" 

UpperBound="1" To="//@Features.15" 

From="//@Features.10/@CardinalityBased_Relationships.0"/> 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Regular" 

UpperBound="1" To="//@Features.14" 

From="//@Features.10/@CardinalityBased_Relationships.0"/> 



 

    <CardinalityBased_Relationships xsi:type="FeatureModelPackage:Regular" 

UpperBound="1" To="//@Features.13" 

From="//@Features.10/@CardinalityBased_Relationships.0"/> 

  </Features> 

  <Features Name="Text"/> 

  <Features Name="Image"/> 

  <Features Name="QuickView"/> 

  <Features Name="Highlighted"/> 

  <Features Name="Momentary"/> 

  <Features Name="Iconic"/> 

</FeatureModelPackage:FeatureModel> 
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